J. Butterfield, J. Tallent, S. Patterson, Owen Jeffries, Louis P. Howe, M. Waldron
{"title":"头戴式惯性传感器测量游泳性能的有效性","authors":"J. Butterfield, J. Tallent, S. Patterson, Owen Jeffries, Louis P. Howe, M. Waldron","doi":"10.1051/sm/2019027","DOIUrl":null,"url":null,"abstract":"The validity of the TritonWear® device to measure swimming performance was investigated, with a pre-determined analytical goal of 6%. Twenty youth swimmers completed a 100 m swim in a 25 m pool, swimming breaststroke or freestyle wearing the TritonWear® device, whilst being filmed above and below water with three cameras. 95% limits of agreement (95% LoA) and coefficient of variation (CV%) were used to calculate error. Systematic biases (P < 0.05) were found between the two systems only for distance per stroke during breaststroke. Freestyle metrics agreement ranged between 1.06% and 10.40% CV, except for distance per stroke (CV = 14.64%), and time underwater (CV = 18.15%). Breaststroke metrics ranged between 0.95% and 13.74% CV, except for time underwater (CV = 25.76%). The smallest errors were found for split-times, speed, stroke-count and stroke-rate, across both strokes (all < 5% CV). The TritonWear® can be used for basic metrics of performance, such as split-time and speed but the error of more complex measurements, such as time underwater or turn-times, renders them unable to identify typical performance changes.","PeriodicalId":121091,"journal":{"name":"Movement & Sport Sciences - Science & Motricité","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The validity of a head-worn inertial sensor for measurements of swimming performance\",\"authors\":\"J. Butterfield, J. Tallent, S. Patterson, Owen Jeffries, Louis P. Howe, M. Waldron\",\"doi\":\"10.1051/sm/2019027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The validity of the TritonWear® device to measure swimming performance was investigated, with a pre-determined analytical goal of 6%. Twenty youth swimmers completed a 100 m swim in a 25 m pool, swimming breaststroke or freestyle wearing the TritonWear® device, whilst being filmed above and below water with three cameras. 95% limits of agreement (95% LoA) and coefficient of variation (CV%) were used to calculate error. Systematic biases (P < 0.05) were found between the two systems only for distance per stroke during breaststroke. Freestyle metrics agreement ranged between 1.06% and 10.40% CV, except for distance per stroke (CV = 14.64%), and time underwater (CV = 18.15%). Breaststroke metrics ranged between 0.95% and 13.74% CV, except for time underwater (CV = 25.76%). The smallest errors were found for split-times, speed, stroke-count and stroke-rate, across both strokes (all < 5% CV). The TritonWear® can be used for basic metrics of performance, such as split-time and speed but the error of more complex measurements, such as time underwater or turn-times, renders them unable to identify typical performance changes.\",\"PeriodicalId\":121091,\"journal\":{\"name\":\"Movement & Sport Sciences - Science & Motricité\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Movement & Sport Sciences - Science & Motricité\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/sm/2019027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement & Sport Sciences - Science & Motricité","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sm/2019027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The validity of a head-worn inertial sensor for measurements of swimming performance
The validity of the TritonWear® device to measure swimming performance was investigated, with a pre-determined analytical goal of 6%. Twenty youth swimmers completed a 100 m swim in a 25 m pool, swimming breaststroke or freestyle wearing the TritonWear® device, whilst being filmed above and below water with three cameras. 95% limits of agreement (95% LoA) and coefficient of variation (CV%) were used to calculate error. Systematic biases (P < 0.05) were found between the two systems only for distance per stroke during breaststroke. Freestyle metrics agreement ranged between 1.06% and 10.40% CV, except for distance per stroke (CV = 14.64%), and time underwater (CV = 18.15%). Breaststroke metrics ranged between 0.95% and 13.74% CV, except for time underwater (CV = 25.76%). The smallest errors were found for split-times, speed, stroke-count and stroke-rate, across both strokes (all < 5% CV). The TritonWear® can be used for basic metrics of performance, such as split-time and speed but the error of more complex measurements, such as time underwater or turn-times, renders them unable to identify typical performance changes.