变结构机械系统的最优轨迹规划

K. Yunt
{"title":"变结构机械系统的最优轨迹规划","authors":"K. Yunt","doi":"10.1109/VSS.2006.1644534","DOIUrl":null,"url":null,"abstract":"The planning of optimal trajectories for nonholonomic systems and of structure-variant mechanical systems are active research areas. In this report the optimal trajectories of a structure-variant mechanical systems are determined by making use of a combined direct shooting and successive unconstrained minimization method (SUMT), which performs the integrations of the dynamical system based on the timestepping scheme. A certificate of optimality is provided for the structure-variant trajectories obtained by the new optimization method","PeriodicalId":146618,"journal":{"name":"International Workshop on Variable Structure Systems, 2006. VSS'06.","volume":"32 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal trajectory planning for structure-variant mechanical systems\",\"authors\":\"K. Yunt\",\"doi\":\"10.1109/VSS.2006.1644534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planning of optimal trajectories for nonholonomic systems and of structure-variant mechanical systems are active research areas. In this report the optimal trajectories of a structure-variant mechanical systems are determined by making use of a combined direct shooting and successive unconstrained minimization method (SUMT), which performs the integrations of the dynamical system based on the timestepping scheme. A certificate of optimality is provided for the structure-variant trajectories obtained by the new optimization method\",\"PeriodicalId\":146618,\"journal\":{\"name\":\"International Workshop on Variable Structure Systems, 2006. VSS'06.\",\"volume\":\"32 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Variable Structure Systems, 2006. VSS'06.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2006.1644534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Variable Structure Systems, 2006. VSS'06.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2006.1644534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非完整系统和变结构机械系统的最优轨迹规划是一个活跃的研究领域。本文采用直接射击和连续无约束最小化相结合的方法确定了结构变机械系统的最优轨迹,该方法基于时间步进格式对动力系统进行了积分。对新优化方法得到的变结构轨迹给出了最优性证明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal trajectory planning for structure-variant mechanical systems
The planning of optimal trajectories for nonholonomic systems and of structure-variant mechanical systems are active research areas. In this report the optimal trajectories of a structure-variant mechanical systems are determined by making use of a combined direct shooting and successive unconstrained minimization method (SUMT), which performs the integrations of the dynamical system based on the timestepping scheme. A certificate of optimality is provided for the structure-variant trajectories obtained by the new optimization method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信