Francesco Lorenzelli, A. Elsayed, C. Godfrin, A. Grill, S. Kubicek, Ruoyu Li, M. Stucchi, D. Wan, K. D. Greve, E. Marinissen, G. Gielen
{"title":"用于硅自旋量子比特单电子晶体管室温筛选的晶体管指标研究","authors":"Francesco Lorenzelli, A. Elsayed, C. Godfrin, A. Grill, S. Kubicek, Ruoyu Li, M. Stucchi, D. Wan, K. D. Greve, E. Marinissen, G. Gielen","doi":"10.1109/ETS56758.2023.10173954","DOIUrl":null,"url":null,"abstract":"Quantum computers aim at solving computationally hard tasks exponentially faster than classical computers. Among the different platforms that are candidate for the realization of a large-scale fault-tolerant quantum computer, Si spin qubits are one of the most promising, due to their manufacturability and long coherence times. Spin qubits operate in a 3He/4He dilution refrigerator, featuring extremely low operating temperatures (tens of millikelvin) as well as long cool-down times. Testing at cryogenic temperature is extremely expensive, not only due to the required equipment and the long cool-down time, but also due to the limited number of packaged devices that can be tested in a single cool-down cycle. Our research aims at defining a parametric test routine for high-volume room-temperature screening of MOS Si spin qubit arrays, to select good candidates for cryogenic temperature testing. In this paper we measure Single Electron Transistors (SETs), that represent the overall quality of the array, and report experimental results to investigate which transistor metrics are more relevant for the device screening, comparing room-temperature data at 295K to 4K and 40mK data.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Transistor Metrics for Room-Temperature Screening of Single Electron Transistors for Silicon Spin Qubit Applications\",\"authors\":\"Francesco Lorenzelli, A. Elsayed, C. Godfrin, A. Grill, S. Kubicek, Ruoyu Li, M. Stucchi, D. Wan, K. D. Greve, E. Marinissen, G. Gielen\",\"doi\":\"10.1109/ETS56758.2023.10173954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computers aim at solving computationally hard tasks exponentially faster than classical computers. Among the different platforms that are candidate for the realization of a large-scale fault-tolerant quantum computer, Si spin qubits are one of the most promising, due to their manufacturability and long coherence times. Spin qubits operate in a 3He/4He dilution refrigerator, featuring extremely low operating temperatures (tens of millikelvin) as well as long cool-down times. Testing at cryogenic temperature is extremely expensive, not only due to the required equipment and the long cool-down time, but also due to the limited number of packaged devices that can be tested in a single cool-down cycle. Our research aims at defining a parametric test routine for high-volume room-temperature screening of MOS Si spin qubit arrays, to select good candidates for cryogenic temperature testing. In this paper we measure Single Electron Transistors (SETs), that represent the overall quality of the array, and report experimental results to investigate which transistor metrics are more relevant for the device screening, comparing room-temperature data at 295K to 4K and 40mK data.\",\"PeriodicalId\":211522,\"journal\":{\"name\":\"2023 IEEE European Test Symposium (ETS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS56758.2023.10173954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10173954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Transistor Metrics for Room-Temperature Screening of Single Electron Transistors for Silicon Spin Qubit Applications
Quantum computers aim at solving computationally hard tasks exponentially faster than classical computers. Among the different platforms that are candidate for the realization of a large-scale fault-tolerant quantum computer, Si spin qubits are one of the most promising, due to their manufacturability and long coherence times. Spin qubits operate in a 3He/4He dilution refrigerator, featuring extremely low operating temperatures (tens of millikelvin) as well as long cool-down times. Testing at cryogenic temperature is extremely expensive, not only due to the required equipment and the long cool-down time, but also due to the limited number of packaged devices that can be tested in a single cool-down cycle. Our research aims at defining a parametric test routine for high-volume room-temperature screening of MOS Si spin qubit arrays, to select good candidates for cryogenic temperature testing. In this paper we measure Single Electron Transistors (SETs), that represent the overall quality of the array, and report experimental results to investigate which transistor metrics are more relevant for the device screening, comparing room-temperature data at 295K to 4K and 40mK data.