M. Kaynak, K. Ehwald, R. Scholz, F. Korndorfer, C. Wipf, Y.M. Sun, B. Tillack, S. Zihir, Y. Gurbuz
{"title":"嵌入式RF-MEMS开关的特性研究","authors":"M. Kaynak, K. Ehwald, R. Scholz, F. Korndorfer, C. Wipf, Y.M. Sun, B. Tillack, S. Zihir, Y. Gurbuz","doi":"10.1109/SMIC.2010.5422816","DOIUrl":null,"url":null,"abstract":"An RF-MEMS capacitive switch for mm-wave integrated circuits, embedded in the BEOL of 0.25 ¿m BiCMOS process, has been characterized. First, a mechanical model based on Finite-Element-Method (FEM) was developed by taking the residual stress of the thin film membrane into account. The pull-in voltage and the capacitance values obtained with the mechanical model agree very well with the measured values. Moreover, S-parameters were extracted using Electromagnetic (EM) solver. The data observed in this way also agree well with the experimental ones measured up to 110 GHz. The developed RF model was applied to a transmit/receive (T/R) antenna switch design. The results proved the feasibility of using the FEM model in circuit simulations for the development of RF-MEMS switch embedded, single-chip multi-band RF ICs.","PeriodicalId":404957,"journal":{"name":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","volume":"464 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Characterization of an embedded RF-MEMS switch\",\"authors\":\"M. Kaynak, K. Ehwald, R. Scholz, F. Korndorfer, C. Wipf, Y.M. Sun, B. Tillack, S. Zihir, Y. Gurbuz\",\"doi\":\"10.1109/SMIC.2010.5422816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An RF-MEMS capacitive switch for mm-wave integrated circuits, embedded in the BEOL of 0.25 ¿m BiCMOS process, has been characterized. First, a mechanical model based on Finite-Element-Method (FEM) was developed by taking the residual stress of the thin film membrane into account. The pull-in voltage and the capacitance values obtained with the mechanical model agree very well with the measured values. Moreover, S-parameters were extracted using Electromagnetic (EM) solver. The data observed in this way also agree well with the experimental ones measured up to 110 GHz. The developed RF model was applied to a transmit/receive (T/R) antenna switch design. The results proved the feasibility of using the FEM model in circuit simulations for the development of RF-MEMS switch embedded, single-chip multi-band RF ICs.\",\"PeriodicalId\":404957,\"journal\":{\"name\":\"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)\",\"volume\":\"464 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMIC.2010.5422816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2010.5422816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An RF-MEMS capacitive switch for mm-wave integrated circuits, embedded in the BEOL of 0.25 ¿m BiCMOS process, has been characterized. First, a mechanical model based on Finite-Element-Method (FEM) was developed by taking the residual stress of the thin film membrane into account. The pull-in voltage and the capacitance values obtained with the mechanical model agree very well with the measured values. Moreover, S-parameters were extracted using Electromagnetic (EM) solver. The data observed in this way also agree well with the experimental ones measured up to 110 GHz. The developed RF model was applied to a transmit/receive (T/R) antenna switch design. The results proved the feasibility of using the FEM model in circuit simulations for the development of RF-MEMS switch embedded, single-chip multi-band RF ICs.