基于知识的粗、细网格空间映射方法的电磁优化

F. Feng, Chao Zhang, Venu-Madhav-Reddy Gongal-Reddy, Qi-jun Zhang
{"title":"基于知识的粗、细网格空间映射方法的电磁优化","authors":"F. Feng, Chao Zhang, Venu-Madhav-Reddy Gongal-Reddy, Qi-jun Zhang","doi":"10.1109/NEMO.2014.6995665","DOIUrl":null,"url":null,"abstract":"Space mapping is an effective method for speeding up EM optimization. The method normally requires an equivalent circuit as the coarse model. This paper addresses the situation when an equivalent circuit coarse model is not available. We establish our coarse model using a lookup table to store the data of coarse mesh EM simulations and its derivatives, avoiding the EM re-simulations w.r.t. the same values of design variables. In the proposed method, the surrogate model is developed using knowledge-based neural network (KBNN) combining the coarse model with a neural network. Our technique uses mostly coarse mesh EM evaluation and occasionally fine mesh EM evaluation to achieve optimal EM solutions with fine mesh accuracy. This technique is illustrated by two microwave filter examples.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Knowledge-based coarse and fine mesh space mapping approach to EM optimization\",\"authors\":\"F. Feng, Chao Zhang, Venu-Madhav-Reddy Gongal-Reddy, Qi-jun Zhang\",\"doi\":\"10.1109/NEMO.2014.6995665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space mapping is an effective method for speeding up EM optimization. The method normally requires an equivalent circuit as the coarse model. This paper addresses the situation when an equivalent circuit coarse model is not available. We establish our coarse model using a lookup table to store the data of coarse mesh EM simulations and its derivatives, avoiding the EM re-simulations w.r.t. the same values of design variables. In the proposed method, the surrogate model is developed using knowledge-based neural network (KBNN) combining the coarse model with a neural network. Our technique uses mostly coarse mesh EM evaluation and occasionally fine mesh EM evaluation to achieve optimal EM solutions with fine mesh accuracy. This technique is illustrated by two microwave filter examples.\",\"PeriodicalId\":273349,\"journal\":{\"name\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO.2014.6995665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

空间映射是加速电磁优化的有效方法。该方法通常需要一个等效电路作为粗模型。本文解决了没有等效电路粗模型的情况。我们使用查找表来建立粗网格模型,以存储粗网格电磁仿真及其导数的数据,避免在相同的设计变量值下进行电磁重新模拟。在该方法中,采用基于知识的神经网络(KBNN)将粗模型与神经网络相结合来建立代理模型。我们的技术主要使用粗网格EM评估,偶尔使用细网格EM评估,以获得具有细网格精度的最佳EM解决方案。通过两个微波滤波器实例说明了该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-based coarse and fine mesh space mapping approach to EM optimization
Space mapping is an effective method for speeding up EM optimization. The method normally requires an equivalent circuit as the coarse model. This paper addresses the situation when an equivalent circuit coarse model is not available. We establish our coarse model using a lookup table to store the data of coarse mesh EM simulations and its derivatives, avoiding the EM re-simulations w.r.t. the same values of design variables. In the proposed method, the surrogate model is developed using knowledge-based neural network (KBNN) combining the coarse model with a neural network. Our technique uses mostly coarse mesh EM evaluation and occasionally fine mesh EM evaluation to achieve optimal EM solutions with fine mesh accuracy. This technique is illustrated by two microwave filter examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信