基于自动微分的SPICE紧凑模型的高效参数提取

Michihiro Shintani, Masayuki Hiromoto, Takashi Sato
{"title":"基于自动微分的SPICE紧凑模型的高效参数提取","authors":"Michihiro Shintani, Masayuki Hiromoto, Takashi Sato","doi":"10.1109/ICMTS.2018.8383759","DOIUrl":null,"url":null,"abstract":"A novel parameter extraction method for compact MOSFET models is proposed. The proposed method exploits automatic differentiation (AD) technique that is widely used in the training of artificial neural networks. In the AD technique, gradient of all the parameters of the MOSFET model is analytically calculated as a graph to reduce computational cost. On the basis of the calculated gradient, the model parameters are efficiently optimized. Through experiments using SPICE models, the parameter extraction using the proposed method achieved 7.01x speedup compared to that using the numerical-differentiation method.","PeriodicalId":271839,"journal":{"name":"2018 IEEE International Conference on Microelectronic Test Structures (ICMTS)","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient parameter-extraction of SPICE compact model through automatic differentiation\",\"authors\":\"Michihiro Shintani, Masayuki Hiromoto, Takashi Sato\",\"doi\":\"10.1109/ICMTS.2018.8383759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel parameter extraction method for compact MOSFET models is proposed. The proposed method exploits automatic differentiation (AD) technique that is widely used in the training of artificial neural networks. In the AD technique, gradient of all the parameters of the MOSFET model is analytically calculated as a graph to reduce computational cost. On the basis of the calculated gradient, the model parameters are efficiently optimized. Through experiments using SPICE models, the parameter extraction using the proposed method achieved 7.01x speedup compared to that using the numerical-differentiation method.\",\"PeriodicalId\":271839,\"journal\":{\"name\":\"2018 IEEE International Conference on Microelectronic Test Structures (ICMTS)\",\"volume\":\"22 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Microelectronic Test Structures (ICMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTS.2018.8383759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Microelectronic Test Structures (ICMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2018.8383759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的紧凑型MOSFET模型参数提取方法。该方法利用了在人工神经网络训练中广泛应用的自动微分(AD)技术。在AD技术中,将MOSFET模型的所有参数的梯度以图的形式解析计算,以减少计算成本。基于计算得到的梯度,对模型参数进行了有效的优化。通过SPICE模型实验,该方法的参数提取速度比数值微分法提高了7.01倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient parameter-extraction of SPICE compact model through automatic differentiation
A novel parameter extraction method for compact MOSFET models is proposed. The proposed method exploits automatic differentiation (AD) technique that is widely used in the training of artificial neural networks. In the AD technique, gradient of all the parameters of the MOSFET model is analytically calculated as a graph to reduce computational cost. On the basis of the calculated gradient, the model parameters are efficiently optimized. Through experiments using SPICE models, the parameter extraction using the proposed method achieved 7.01x speedup compared to that using the numerical-differentiation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信