在超立方体中表示模糊集。第二部分:生命科学的发展

J. Limberg, R. Seising
{"title":"在超立方体中表示模糊集。第二部分:生命科学的发展","authors":"J. Limberg, R. Seising","doi":"10.1109/SOFA.2007.4318308","DOIUrl":null,"url":null,"abstract":"In this paper we provide an insight into fuzzy sets as points in the hypercube. This approach to geometry of fuzzy sets was first published by Bart Kosko in the 1980s. After a brief survey we show two applications of this theory in life sciences: fuzzy diseases and fuzzy genomes. This historical and analytical contribution to the 2nd IEEE Workshop on Soft Computing Applications is a sequel to the paper \"Representing fuzzy sets in the hypercube. part I: a historical note\".","PeriodicalId":205589,"journal":{"name":"2007 2nd International Workshop on Soft Computing Applications","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representing Fuzzy Sets in the Hypercube Part II: Developments in the Life Sciences\",\"authors\":\"J. Limberg, R. Seising\",\"doi\":\"10.1109/SOFA.2007.4318308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide an insight into fuzzy sets as points in the hypercube. This approach to geometry of fuzzy sets was first published by Bart Kosko in the 1980s. After a brief survey we show two applications of this theory in life sciences: fuzzy diseases and fuzzy genomes. This historical and analytical contribution to the 2nd IEEE Workshop on Soft Computing Applications is a sequel to the paper \\\"Representing fuzzy sets in the hypercube. part I: a historical note\\\".\",\"PeriodicalId\":205589,\"journal\":{\"name\":\"2007 2nd International Workshop on Soft Computing Applications\",\"volume\":\"411 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Workshop on Soft Computing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOFA.2007.4318308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Workshop on Soft Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOFA.2007.4318308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提供了模糊集作为超立方体中的点的一种见解。这种模糊集的几何方法是在20世纪80年代由Bart Kosko首次发表的。在一个简短的调查之后,我们展示了这个理论在生命科学中的两个应用:模糊疾病和模糊基因组。这篇对第二届IEEE软计算应用研讨会的历史性和分析性贡献是论文“在超立方体中表示模糊集”的续集。第一部分:历史注释”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representing Fuzzy Sets in the Hypercube Part II: Developments in the Life Sciences
In this paper we provide an insight into fuzzy sets as points in the hypercube. This approach to geometry of fuzzy sets was first published by Bart Kosko in the 1980s. After a brief survey we show two applications of this theory in life sciences: fuzzy diseases and fuzzy genomes. This historical and analytical contribution to the 2nd IEEE Workshop on Soft Computing Applications is a sequel to the paper "Representing fuzzy sets in the hypercube. part I: a historical note".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信