水文多传感器无人船

Krzysztof Pyrchla, J. Pyrchla, Tadeusz Kantak
{"title":"水文多传感器无人船","authors":"Krzysztof Pyrchla, J. Pyrchla, Tadeusz Kantak","doi":"10.1109/BGC-GEOMATICS.2018.00050","DOIUrl":null,"url":null,"abstract":"This article describes the design of the unmanned surface vessel (USV) and the algorithms for planning the trajectories to be followed on measurement missions. The algorithms take account of the dynamically varying impacts of external forces (wind and surface current) on the vessel's motion. Feedback loops enable the counteraction of external factors that cause disturbance to the desired trajectory. The sensors installed on the vessel provide information about the surroundings and adjust the parameters of its motion to provide optimum completion of the planned trajectory and to prevent collisions with fixed and moving obstacles. The nature of the hydrographic work planned to be carried out by the craft requires that it be designed with the following features: shallow draft, high stability, the absence of interference of the measurement sensors by the engine, and high energy efficiency. These features will give a competitive advantage over similar platforms available on the market.","PeriodicalId":145350,"journal":{"name":"2018 Baltic Geodetic Congress (BGC Geomatics)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrographic Multisensory Unmanned Watercraft\",\"authors\":\"Krzysztof Pyrchla, J. Pyrchla, Tadeusz Kantak\",\"doi\":\"10.1109/BGC-GEOMATICS.2018.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the design of the unmanned surface vessel (USV) and the algorithms for planning the trajectories to be followed on measurement missions. The algorithms take account of the dynamically varying impacts of external forces (wind and surface current) on the vessel's motion. Feedback loops enable the counteraction of external factors that cause disturbance to the desired trajectory. The sensors installed on the vessel provide information about the surroundings and adjust the parameters of its motion to provide optimum completion of the planned trajectory and to prevent collisions with fixed and moving obstacles. The nature of the hydrographic work planned to be carried out by the craft requires that it be designed with the following features: shallow draft, high stability, the absence of interference of the measurement sensors by the engine, and high energy efficiency. These features will give a competitive advantage over similar platforms available on the market.\",\"PeriodicalId\":145350,\"journal\":{\"name\":\"2018 Baltic Geodetic Congress (BGC Geomatics)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Baltic Geodetic Congress (BGC Geomatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BGC-GEOMATICS.2018.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Baltic Geodetic Congress (BGC Geomatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BGC-GEOMATICS.2018.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了无人水面舰艇(USV)的设计以及在测量任务中规划轨迹的算法。该算法考虑了外力(风和表面流)对船舶运动的动态变化影响。反馈回路能够抵消对期望轨迹造成干扰的外部因素。安装在船上的传感器提供有关周围环境的信息,并调整其运动参数,以提供计划轨迹的最佳完成,并防止与固定和移动障碍物发生碰撞。计划由该船进行的水文测量工作的性质要求其设计具有以下特点:浅吃水、高稳定性、不受发动机测量传感器干扰和高能效。这些特性将使它比市场上现有的类似平台具有竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrographic Multisensory Unmanned Watercraft
This article describes the design of the unmanned surface vessel (USV) and the algorithms for planning the trajectories to be followed on measurement missions. The algorithms take account of the dynamically varying impacts of external forces (wind and surface current) on the vessel's motion. Feedback loops enable the counteraction of external factors that cause disturbance to the desired trajectory. The sensors installed on the vessel provide information about the surroundings and adjust the parameters of its motion to provide optimum completion of the planned trajectory and to prevent collisions with fixed and moving obstacles. The nature of the hydrographic work planned to be carried out by the craft requires that it be designed with the following features: shallow draft, high stability, the absence of interference of the measurement sensors by the engine, and high energy efficiency. These features will give a competitive advantage over similar platforms available on the market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信