基于本体的移动电视分析与推荐系统

Y. Naudet, A. Aghasaryan, Y. Toms, C. Senot
{"title":"基于本体的移动电视分析与推荐系统","authors":"Y. Naudet, A. Aghasaryan, Y. Toms, C. Senot","doi":"10.1109/SMAP.2008.9","DOIUrl":null,"url":null,"abstract":"We present here a recommending system that has been developed for filtering TV content provided to mobile devices users. This recommender is fully based on ontologies, which are used to formalize both the user and her/his interests, and the audiovisual content. The developed ontologies allow matchmaking between user and content at different levels, based on three means to define user interests: according to categories, content description, or any combination of concepts defined in an ontology. The computation of user profiles relies on both explicit and implicit profiling, based on incremental learning of interest degrees from content usage.","PeriodicalId":292389,"journal":{"name":"2008 Third International Workshop on Semantic Media Adaptation and Personalization","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An Ontology-Based Profiling and Recommending System for Mobile TV\",\"authors\":\"Y. Naudet, A. Aghasaryan, Y. Toms, C. Senot\",\"doi\":\"10.1109/SMAP.2008.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present here a recommending system that has been developed for filtering TV content provided to mobile devices users. This recommender is fully based on ontologies, which are used to formalize both the user and her/his interests, and the audiovisual content. The developed ontologies allow matchmaking between user and content at different levels, based on three means to define user interests: according to categories, content description, or any combination of concepts defined in an ontology. The computation of user profiles relies on both explicit and implicit profiling, based on incremental learning of interest degrees from content usage.\",\"PeriodicalId\":292389,\"journal\":{\"name\":\"2008 Third International Workshop on Semantic Media Adaptation and Personalization\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Workshop on Semantic Media Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMAP.2008.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Workshop on Semantic Media Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2008.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们在这里提出了一个推荐系统,该系统已开发用于过滤提供给移动设备用户的电视内容。这个推荐完全基于本体,用来形式化用户和他/她的兴趣,以及视听内容。开发的本体允许在不同层次上匹配用户和内容,基于三种定义用户兴趣的方法:根据类别、内容描述或本体中定义的概念的任何组合。用户轮廓的计算依赖于显式和隐式轮廓,基于从内容使用中增加的兴趣度学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ontology-Based Profiling and Recommending System for Mobile TV
We present here a recommending system that has been developed for filtering TV content provided to mobile devices users. This recommender is fully based on ontologies, which are used to formalize both the user and her/his interests, and the audiovisual content. The developed ontologies allow matchmaking between user and content at different levels, based on three means to define user interests: according to categories, content description, or any combination of concepts defined in an ontology. The computation of user profiles relies on both explicit and implicit profiling, based on incremental learning of interest degrees from content usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信