{"title":"化学引诱剂梯度诱导细胞迁移速度的定量分析及自动控制器设计","authors":"Hao Yang, Xue Gou, H. Chu, Yong Wang, Dong Sun","doi":"10.1109/NANO.2014.6968077","DOIUrl":null,"url":null,"abstract":"Cell chemotaxis is a phenomenon in which cells spatially sense the chemoattractant gradient in the extra-environment and move along this gradient. This paper illustrates the relationship between the chemoattractant gradient and the cell velocity quantitatively, using a single-cell motility assay method based on optically manipulated microsources. A case study was performed on leukemia cancer cells. Quantitative study indicates that the cell is sensitive to the gradient, and can move faster under a high gradient. Based on the quantitative relationship, a control strategy was proposed to realize automatically induced cell migration. The simulation results demonstrate the effectiveness and robustness of the proposed method.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of chemoattractant gradient induced cell migration velocity and automatic controller design\",\"authors\":\"Hao Yang, Xue Gou, H. Chu, Yong Wang, Dong Sun\",\"doi\":\"10.1109/NANO.2014.6968077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell chemotaxis is a phenomenon in which cells spatially sense the chemoattractant gradient in the extra-environment and move along this gradient. This paper illustrates the relationship between the chemoattractant gradient and the cell velocity quantitatively, using a single-cell motility assay method based on optically manipulated microsources. A case study was performed on leukemia cancer cells. Quantitative study indicates that the cell is sensitive to the gradient, and can move faster under a high gradient. Based on the quantitative relationship, a control strategy was proposed to realize automatically induced cell migration. The simulation results demonstrate the effectiveness and robustness of the proposed method.\",\"PeriodicalId\":367660,\"journal\":{\"name\":\"14th IEEE International Conference on Nanotechnology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2014.6968077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative analysis of chemoattractant gradient induced cell migration velocity and automatic controller design
Cell chemotaxis is a phenomenon in which cells spatially sense the chemoattractant gradient in the extra-environment and move along this gradient. This paper illustrates the relationship between the chemoattractant gradient and the cell velocity quantitatively, using a single-cell motility assay method based on optically manipulated microsources. A case study was performed on leukemia cancer cells. Quantitative study indicates that the cell is sensitive to the gradient, and can move faster under a high gradient. Based on the quantitative relationship, a control strategy was proposed to realize automatically induced cell migration. The simulation results demonstrate the effectiveness and robustness of the proposed method.