动态环境下基于视觉SLAM的目标移动分类

Huayan Zhang, Tianwei Zhang, Yang Li, Lei Zhang, Wanpeng Wang
{"title":"动态环境下基于视觉SLAM的目标移动分类","authors":"Huayan Zhang, Tianwei Zhang, Yang Li, Lei Zhang, Wanpeng Wang","doi":"10.1109/UR49135.2020.9144979","DOIUrl":null,"url":null,"abstract":"Most of the existed visual odometry methods cannot work in dynamic environments since the dynamic objects lead to wrong uncertain feature associations. In this paper, we involved a learning-based object classification front end to recognize and remove the dynamic object, and thereby ensure our ego-motion estimator’s robustness in high dynamic environments. Moreover, we newly classify the environmental objects into static, movable and dynamic three classes. This processing not only enables the ego-motion estimation in the dynamic environment but also leads to clean and complete map-ping results. The experimental results indicate that the proposed method outperformed the other state-of-the-art SLAM solutions in both dynamic and static indoor environments.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Mobility classification based Visual SLAM in Dynamic Environments\",\"authors\":\"Huayan Zhang, Tianwei Zhang, Yang Li, Lei Zhang, Wanpeng Wang\",\"doi\":\"10.1109/UR49135.2020.9144979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the existed visual odometry methods cannot work in dynamic environments since the dynamic objects lead to wrong uncertain feature associations. In this paper, we involved a learning-based object classification front end to recognize and remove the dynamic object, and thereby ensure our ego-motion estimator’s robustness in high dynamic environments. Moreover, we newly classify the environmental objects into static, movable and dynamic three classes. This processing not only enables the ego-motion estimation in the dynamic environment but also leads to clean and complete map-ping results. The experimental results indicate that the proposed method outperformed the other state-of-the-art SLAM solutions in both dynamic and static indoor environments.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"321 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于动态目标会导致错误的不确定特征关联,现有的视觉里程测量方法大多不能在动态环境下工作。在本文中,我们引入了一个基于学习的目标分类前端来识别和去除动态目标,从而保证了我们的自运动估计器在高动态环境中的鲁棒性。在此基础上,将环境对象重新划分为静态、活动和动态三类。这种处理不仅可以实现动态环境下的自运动估计,而且可以得到干净完整的映射结果。实验结果表明,该方法在动态和静态室内环境下均优于其他最先进的SLAM解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Mobility classification based Visual SLAM in Dynamic Environments
Most of the existed visual odometry methods cannot work in dynamic environments since the dynamic objects lead to wrong uncertain feature associations. In this paper, we involved a learning-based object classification front end to recognize and remove the dynamic object, and thereby ensure our ego-motion estimator’s robustness in high dynamic environments. Moreover, we newly classify the environmental objects into static, movable and dynamic three classes. This processing not only enables the ego-motion estimation in the dynamic environment but also leads to clean and complete map-ping results. The experimental results indicate that the proposed method outperformed the other state-of-the-art SLAM solutions in both dynamic and static indoor environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信