{"title":"柔性飞机大尺度LTI模型的降阶LPV模型生成","authors":"Charles Poussot-Vassal, C. Roos","doi":"10.1109/ACC.2011.5991178","DOIUrl":null,"url":null,"abstract":"In the civilian aeronautical industry, flexible aircraft models are often built and validated at frozen flight and mass configurations. Unfortunately, these medium(large)-scale models derived from high fidelity numerical tools are generally not well adapted for simulation, control and analysis. In this paper, a methodology to derive a reduced-order Linear Parameter Varying (LPV) model from a set of medium(large)-scale Linear Time Invariant (LTI) models describing a given system at frozen configurations is described. The proposed methodology is in three steps: (i) first, local model approximation is applied using recent advances in SVD-Krylov methods, (ii) then, an appropriate base change is applied to allow interpolation, (iii) and finally, an LPV model is derived and converted into a Linear Fractional Representation (LFR) of suitable size for analysis and control purposes. Results are thoroughly assessed on a set of industrial aeroelastic aircraft models.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Flexible aircraft reduced-order LPV model generation from a set of large-scale LTI models\",\"authors\":\"Charles Poussot-Vassal, C. Roos\",\"doi\":\"10.1109/ACC.2011.5991178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the civilian aeronautical industry, flexible aircraft models are often built and validated at frozen flight and mass configurations. Unfortunately, these medium(large)-scale models derived from high fidelity numerical tools are generally not well adapted for simulation, control and analysis. In this paper, a methodology to derive a reduced-order Linear Parameter Varying (LPV) model from a set of medium(large)-scale Linear Time Invariant (LTI) models describing a given system at frozen configurations is described. The proposed methodology is in three steps: (i) first, local model approximation is applied using recent advances in SVD-Krylov methods, (ii) then, an appropriate base change is applied to allow interpolation, (iii) and finally, an LPV model is derived and converted into a Linear Fractional Representation (LFR) of suitable size for analysis and control purposes. Results are thoroughly assessed on a set of industrial aeroelastic aircraft models.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible aircraft reduced-order LPV model generation from a set of large-scale LTI models
In the civilian aeronautical industry, flexible aircraft models are often built and validated at frozen flight and mass configurations. Unfortunately, these medium(large)-scale models derived from high fidelity numerical tools are generally not well adapted for simulation, control and analysis. In this paper, a methodology to derive a reduced-order Linear Parameter Varying (LPV) model from a set of medium(large)-scale Linear Time Invariant (LTI) models describing a given system at frozen configurations is described. The proposed methodology is in three steps: (i) first, local model approximation is applied using recent advances in SVD-Krylov methods, (ii) then, an appropriate base change is applied to allow interpolation, (iii) and finally, an LPV model is derived and converted into a Linear Fractional Representation (LFR) of suitable size for analysis and control purposes. Results are thoroughly assessed on a set of industrial aeroelastic aircraft models.