指数-广义截尾几何分布:一种新的寿命分布

Mohieddine Rahmouni, Ayman Orabi
{"title":"指数-广义截尾几何分布:一种新的寿命分布","authors":"Mohieddine Rahmouni, Ayman Orabi","doi":"10.5539/IJSP.V7N1P1","DOIUrl":null,"url":null,"abstract":"This paper introduces a new two-parameter lifetime distribution, called the exponential-generalized truncated geometric (EGTG) distribution, by compounding the exponential with the generalized truncated geometric distributions. The new distribution involves two important known distributions, i.e., the exponential-geometric (Adamidis and Loukas, 1998) and the extended (complementary) exponential-geometric distributions (Adamidis et al., 2005; Louzada et al., 2011) in the minimum and maximum lifetime cases, respectively. General forms of the probability distribution, the survival and the failure rate functions as well as their properties are presented for some special cases. The application study is illustrated based on two real data sets.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Exponential-Generalized Truncated Geometric (EGTG) Distribution: A New Lifetime Distribution\",\"authors\":\"Mohieddine Rahmouni, Ayman Orabi\",\"doi\":\"10.5539/IJSP.V7N1P1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new two-parameter lifetime distribution, called the exponential-generalized truncated geometric (EGTG) distribution, by compounding the exponential with the generalized truncated geometric distributions. The new distribution involves two important known distributions, i.e., the exponential-geometric (Adamidis and Loukas, 1998) and the extended (complementary) exponential-geometric distributions (Adamidis et al., 2005; Louzada et al., 2011) in the minimum and maximum lifetime cases, respectively. General forms of the probability distribution, the survival and the failure rate functions as well as their properties are presented for some special cases. The application study is illustrated based on two real data sets.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/IJSP.V7N1P1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/IJSP.V7N1P1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过将指数与广义截尾几何分布复配,引入了一种新的双参数寿命分布,即指数-广义截尾几何分布。新的分布涉及两个重要的已知分布,即指数几何分布(Adamidis and Loukas, 1998)和扩展(互补)指数几何分布(Adamidis et al., 2005;Louzada et al., 2011),分别在最短和最长寿命的情况下。针对一些特殊情况,给出了概率分布、生存函数和故障率函数的一般形式及其性质。并以两个实际数据集为例进行了应用研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Exponential-Generalized Truncated Geometric (EGTG) Distribution: A New Lifetime Distribution
This paper introduces a new two-parameter lifetime distribution, called the exponential-generalized truncated geometric (EGTG) distribution, by compounding the exponential with the generalized truncated geometric distributions. The new distribution involves two important known distributions, i.e., the exponential-geometric (Adamidis and Loukas, 1998) and the extended (complementary) exponential-geometric distributions (Adamidis et al., 2005; Louzada et al., 2011) in the minimum and maximum lifetime cases, respectively. General forms of the probability distribution, the survival and the failure rate functions as well as their properties are presented for some special cases. The application study is illustrated based on two real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信