基于不同度量融合的图像系统发育

A. Melloni, Paolo Bestagini, S. Milani, M. Tagliasacchi, A. Rocha, S. Tubaro
{"title":"基于不同度量融合的图像系统发育","authors":"A. Melloni, Paolo Bestagini, S. Milani, M. Tagliasacchi, A. Rocha, S. Tubaro","doi":"10.1109/EUVIP.2014.7018370","DOIUrl":null,"url":null,"abstract":"Nowadays, multimedia objects can be easily modified, shared, and distributed, thus determining the widespread diffusion of multiple near-duplicate versions, i.e., objects obtained applying a set of processing operations to original content. This is the case of images downloaded from sharing platforms, modified (e.g., by performing color correction, splicing, etc.) and re-distributed. The evolution of a group of near-duplicate images (i.e., their phylogeny) is a powerful clue to determine both image authenticity and its origin. For this reason, the forensics community has proposed a set of possible solutions to perform phylogenetic analyses based on image dissimilarity computation. Here, we compare different image dissimilarity metrics, and propose a set of original strategies for image phylogeny tree reconstruction. The validation of the proposed methods is performed on a dataset of image phylogeny trees. Depending on the used evaluation metrics, some approaches are preferable to others according to the results. Hence, an analyst can choose the appropriate method according to its needs.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Image phylogeny through dissimilarity metrics fusion\",\"authors\":\"A. Melloni, Paolo Bestagini, S. Milani, M. Tagliasacchi, A. Rocha, S. Tubaro\",\"doi\":\"10.1109/EUVIP.2014.7018370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, multimedia objects can be easily modified, shared, and distributed, thus determining the widespread diffusion of multiple near-duplicate versions, i.e., objects obtained applying a set of processing operations to original content. This is the case of images downloaded from sharing platforms, modified (e.g., by performing color correction, splicing, etc.) and re-distributed. The evolution of a group of near-duplicate images (i.e., their phylogeny) is a powerful clue to determine both image authenticity and its origin. For this reason, the forensics community has proposed a set of possible solutions to perform phylogenetic analyses based on image dissimilarity computation. Here, we compare different image dissimilarity metrics, and propose a set of original strategies for image phylogeny tree reconstruction. The validation of the proposed methods is performed on a dataset of image phylogeny trees. Depending on the used evaluation metrics, some approaches are preferable to others according to the results. Hence, an analyst can choose the appropriate method according to its needs.\",\"PeriodicalId\":442246,\"journal\":{\"name\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2014.7018370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

如今,多媒体对象可以很容易地修改、共享和分发,从而决定了多个近重复版本的广泛扩散,即对原始内容进行一组处理操作获得的对象。从共享平台下载的图片,经过修改(例如,通过色彩校正、拼接等)再分发。一组近重复图像的进化(即它们的系统发育)是确定图像真实性及其起源的有力线索。出于这个原因,法医学团体提出了一组可能的解决方案来执行基于图像不相似性计算的系统发育分析。在此,我们比较了不同的图像不相似度度量,并提出了一套新颖的图像系统发育树重建策略。在图像系统发育树数据集上对所提出的方法进行了验证。根据所使用的评估指标,根据结果,一些方法比其他方法更可取。因此,分析人员可以根据自己的需要选择合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image phylogeny through dissimilarity metrics fusion
Nowadays, multimedia objects can be easily modified, shared, and distributed, thus determining the widespread diffusion of multiple near-duplicate versions, i.e., objects obtained applying a set of processing operations to original content. This is the case of images downloaded from sharing platforms, modified (e.g., by performing color correction, splicing, etc.) and re-distributed. The evolution of a group of near-duplicate images (i.e., their phylogeny) is a powerful clue to determine both image authenticity and its origin. For this reason, the forensics community has proposed a set of possible solutions to perform phylogenetic analyses based on image dissimilarity computation. Here, we compare different image dissimilarity metrics, and propose a set of original strategies for image phylogeny tree reconstruction. The validation of the proposed methods is performed on a dataset of image phylogeny trees. Depending on the used evaluation metrics, some approaches are preferable to others according to the results. Hence, an analyst can choose the appropriate method according to its needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信