基于振动信号和改进模糊聚类算法的机械故障检测

Linh Hoai Tran, Thanh Duc Nguyen
{"title":"基于振动信号和改进模糊聚类算法的机械故障检测","authors":"Linh Hoai Tran, Thanh Duc Nguyen","doi":"10.1109/ICCAIS56082.2022.9990462","DOIUrl":null,"url":null,"abstract":"This paper will present a new solution for machine fault detection based on the vibration signals. The solution will used in improved fuzzy Gustaffson – Kessel clustering method to generate the classification data centers characteristic for different states of the machines. The Gustaffson – Kessel method offers a modified euclidian distance, which allows betters separation borders between data clusters. The model will be tested with the vibration signals collected from the standard CASE Bearing Data Sets to show the high accuracy of the results.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Fault Detection Using Vibration Signals and Improved Fuzzy Clustering Algorithm\",\"authors\":\"Linh Hoai Tran, Thanh Duc Nguyen\",\"doi\":\"10.1109/ICCAIS56082.2022.9990462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will present a new solution for machine fault detection based on the vibration signals. The solution will used in improved fuzzy Gustaffson – Kessel clustering method to generate the classification data centers characteristic for different states of the machines. The Gustaffson – Kessel method offers a modified euclidian distance, which allows betters separation borders between data clusters. The model will be tested with the vibration signals collected from the standard CASE Bearing Data Sets to show the high accuracy of the results.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于振动信号的机械故障检测新方法。将该方法应用于改进的模糊Gustaffson - Kessel聚类方法中,生成机器不同状态下的分类数据中心特征。Gustaffson - Kessel方法提供了一个改进的欧几里得距离,它允许更好地分离数据簇之间的边界。该模型将与从标准CASE轴承数据集收集的振动信号进行测试,以显示结果的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Fault Detection Using Vibration Signals and Improved Fuzzy Clustering Algorithm
This paper will present a new solution for machine fault detection based on the vibration signals. The solution will used in improved fuzzy Gustaffson – Kessel clustering method to generate the classification data centers characteristic for different states of the machines. The Gustaffson – Kessel method offers a modified euclidian distance, which allows betters separation borders between data clusters. The model will be tested with the vibration signals collected from the standard CASE Bearing Data Sets to show the high accuracy of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信