一种面向个性化临床处方的混合推荐系统框架

Qian Zhang, Guangquan Zhang, Jie Lu, D. Wu
{"title":"一种面向个性化临床处方的混合推荐系统框架","authors":"Qian Zhang, Guangquan Zhang, Jie Lu, D. Wu","doi":"10.1109/ISKE.2015.98","DOIUrl":null,"url":null,"abstract":"General practitioners are faced with a great challenge of clinical prescription owing to the increase of new drugs and their complex functions to different diseases. A personalized recommender system can help practitioners discover mass of medical knowledge hidden in history medical records to deal with information overload problem in prescription. To support practitioner's decision making in prescription, this paper proposes a framework of a hybrid recommender system which integrates artificial neural network and case-based reasoning. Three issues are considered in this system framework: (1) to define a patient's need by giving his/her symptom, (2) to mine features from free text in medical records and (3) to analyze temporal efficiency of drugs. The proposed recommender system is expected to help general practitioners to improve their efficiency and reduce risks of making errors in daily clinical consultation with patients.","PeriodicalId":312629,"journal":{"name":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A Framework of Hybrid Recommender System for Personalized Clinical Prescription\",\"authors\":\"Qian Zhang, Guangquan Zhang, Jie Lu, D. Wu\",\"doi\":\"10.1109/ISKE.2015.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General practitioners are faced with a great challenge of clinical prescription owing to the increase of new drugs and their complex functions to different diseases. A personalized recommender system can help practitioners discover mass of medical knowledge hidden in history medical records to deal with information overload problem in prescription. To support practitioner's decision making in prescription, this paper proposes a framework of a hybrid recommender system which integrates artificial neural network and case-based reasoning. Three issues are considered in this system framework: (1) to define a patient's need by giving his/her symptom, (2) to mine features from free text in medical records and (3) to analyze temporal efficiency of drugs. The proposed recommender system is expected to help general practitioners to improve their efficiency and reduce risks of making errors in daily clinical consultation with patients.\",\"PeriodicalId\":312629,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2015.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2015.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

由于新药的不断增加和对不同疾病的复杂作用,全科医生的临床处方面临着巨大的挑战。个性化推荐系统可以帮助从业者发现隐藏在历史病历中的大量医学知识,解决处方信息过载问题。为了支持医生处方决策,本文提出了一种人工神经网络与案例推理相结合的混合推荐系统框架。在这个系统框架中考虑了三个问题:(1)通过给出患者的症状来定义患者的需求;(2)从医疗记录的自由文本中挖掘特征;(3)分析药物的时间效率。拟议的推荐系统有望帮助全科医生提高他们的效率,减少在日常临床咨询患者时出错的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework of Hybrid Recommender System for Personalized Clinical Prescription
General practitioners are faced with a great challenge of clinical prescription owing to the increase of new drugs and their complex functions to different diseases. A personalized recommender system can help practitioners discover mass of medical knowledge hidden in history medical records to deal with information overload problem in prescription. To support practitioner's decision making in prescription, this paper proposes a framework of a hybrid recommender system which integrates artificial neural network and case-based reasoning. Three issues are considered in this system framework: (1) to define a patient's need by giving his/her symptom, (2) to mine features from free text in medical records and (3) to analyze temporal efficiency of drugs. The proposed recommender system is expected to help general practitioners to improve their efficiency and reduce risks of making errors in daily clinical consultation with patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信