基于模糊矩不变性的鲁棒杂草识别

Zhao Peng
{"title":"基于模糊矩不变性的鲁棒杂草识别","authors":"Zhao Peng","doi":"10.1109/CMSP.2011.38","DOIUrl":null,"url":null,"abstract":"Image motion blur and defocus blur often occur when there is a relative motion between the imaging camera and the detected object. These two blurs will degrade the image quality and will also decrease the subsequent pattern recognition accuracy. In this paper, we propose a robust weed recognition scheme using the low quality color weed images with the above-mentioned image blurs. The proposed scheme consists of three steps. First, image matte is used to segment the soil and the plant. Second, the image-moment-based blur invariant features are calculated. Third, weed recognition is performed by using the computed Euclidean distance based on the moment invariants. We have experimentally proved that the effective use of image blur information improves the recognition accuracy of camera-captured weeds.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Weed Recognition Using Blur Moment Invariants\",\"authors\":\"Zhao Peng\",\"doi\":\"10.1109/CMSP.2011.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image motion blur and defocus blur often occur when there is a relative motion between the imaging camera and the detected object. These two blurs will degrade the image quality and will also decrease the subsequent pattern recognition accuracy. In this paper, we propose a robust weed recognition scheme using the low quality color weed images with the above-mentioned image blurs. The proposed scheme consists of three steps. First, image matte is used to segment the soil and the plant. Second, the image-moment-based blur invariant features are calculated. Third, weed recognition is performed by using the computed Euclidean distance based on the moment invariants. We have experimentally proved that the effective use of image blur information improves the recognition accuracy of camera-captured weeds.\",\"PeriodicalId\":309902,\"journal\":{\"name\":\"2011 International Conference on Multimedia and Signal Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Multimedia and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMSP.2011.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当成像相机与被检测物体之间存在相对运动时,往往会出现图像运动模糊和离焦模糊。这两种模糊会降低图像质量,也会降低随后的模式识别精度。本文利用具有上述图像模糊的低质量彩色杂草图像,提出了一种鲁棒杂草识别方案。提出的方案包括三个步骤。首先,利用图像磨砂对土壤和植物进行分割。其次,计算基于图像矩的模糊不变性特征;第三,利用计算得到的基于矩不变量的欧氏距离进行杂草识别。实验证明,图像模糊信息的有效利用提高了相机捕获杂草的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Weed Recognition Using Blur Moment Invariants
Image motion blur and defocus blur often occur when there is a relative motion between the imaging camera and the detected object. These two blurs will degrade the image quality and will also decrease the subsequent pattern recognition accuracy. In this paper, we propose a robust weed recognition scheme using the low quality color weed images with the above-mentioned image blurs. The proposed scheme consists of three steps. First, image matte is used to segment the soil and the plant. Second, the image-moment-based blur invariant features are calculated. Third, weed recognition is performed by using the computed Euclidean distance based on the moment invariants. We have experimentally proved that the effective use of image blur information improves the recognition accuracy of camera-captured weeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信