股票市场预测智能范式的集成模型

Qiang Wu, Yuehui Chen, Z. Liu
{"title":"股票市场预测智能范式的集成模型","authors":"Qiang Wu, Yuehui Chen, Z. Liu","doi":"10.1109/WKDD.2008.54","DOIUrl":null,"url":null,"abstract":"The use of intelligent systems for stock market predictions has been widely established. This paper introduces a ensemble model of SVM and ANNs for the prediction of three stock indices. The performance of this model is then compared with support vector machine model and an artificial neural network respectively. Empirical results reveal that the ensemble result obtain the best results.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Ensemble Model of Intelligent Paradigms for Stock Market Forecasting\",\"authors\":\"Qiang Wu, Yuehui Chen, Z. Liu\",\"doi\":\"10.1109/WKDD.2008.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of intelligent systems for stock market predictions has been widely established. This paper introduces a ensemble model of SVM and ANNs for the prediction of three stock indices. The performance of this model is then compared with support vector machine model and an artificial neural network respectively. Empirical results reveal that the ensemble result obtain the best results.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

智能系统在股票市场预测中的应用已经广泛建立。本文介绍了一种基于支持向量机和人工神经网络的三种股票指数预测集成模型。并将该模型的性能与支持向量机模型和人工神经网络进行了比较。实证结果表明,集成结果获得了最佳效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Model of Intelligent Paradigms for Stock Market Forecasting
The use of intelligent systems for stock market predictions has been widely established. This paper introduces a ensemble model of SVM and ANNs for the prediction of three stock indices. The performance of this model is then compared with support vector machine model and an artificial neural network respectively. Empirical results reveal that the ensemble result obtain the best results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信