不连续伽辽金法精确辐射边界条件下的h矩阵压缩

Hamid Bagherli, I. Jeffrey
{"title":"不连续伽辽金法精确辐射边界条件下的h矩阵压缩","authors":"Hamid Bagherli, I. Jeffrey","doi":"10.1109/ANTEM.2016.7550229","DOIUrl":null,"url":null,"abstract":"The discontinuous Galerkin method (DGM) is a flexible high-order forward solver for time-harmonic scattering problems in electromagnetics that results in a typically sparse system of linear equations. However, when exact radiating boundary conditions (ERBCs) are used to truncate the computational domain, a dense block is introduced into the DGM system that relates elements on a Huygens surface to elements on the boundary of the computational domain. In the context of iterative solution methods, this dense block can dominate the cost of evaluating matrix-vector-products and should be accelerated. Herein, we investigate the application of Hierarchical Matrices (H-matrices) to compress and accelerate the evaluation of the dense ERBC sub-matrix. Results are limited to high-order 2D transverse magnetic problems but demonstrate that effective compression resulting in substantial memory and time savings can be achieved even for relatively small problem sizes.","PeriodicalId":447985,"journal":{"name":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H-matrix compression of discontinous Galerkin method exact radiating boundary conditions\",\"authors\":\"Hamid Bagherli, I. Jeffrey\",\"doi\":\"10.1109/ANTEM.2016.7550229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discontinuous Galerkin method (DGM) is a flexible high-order forward solver for time-harmonic scattering problems in electromagnetics that results in a typically sparse system of linear equations. However, when exact radiating boundary conditions (ERBCs) are used to truncate the computational domain, a dense block is introduced into the DGM system that relates elements on a Huygens surface to elements on the boundary of the computational domain. In the context of iterative solution methods, this dense block can dominate the cost of evaluating matrix-vector-products and should be accelerated. Herein, we investigate the application of Hierarchical Matrices (H-matrices) to compress and accelerate the evaluation of the dense ERBC sub-matrix. Results are limited to high-order 2D transverse magnetic problems but demonstrate that effective compression resulting in substantial memory and time savings can be achieved even for relatively small problem sizes.\",\"PeriodicalId\":447985,\"journal\":{\"name\":\"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTEM.2016.7550229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEM.2016.7550229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不连续伽辽金方法(DGM)是一种灵活的高阶正演解电磁学中时间谐波散射问题的方法。然而,当使用精确辐射边界条件(ERBCs)截断计算域时,在DGM系统中引入了一个致密块,该块将惠更斯表面上的元素与计算域边界上的元素联系起来。在迭代求解方法中,这种密集块可以支配求矩阵-向量积的代价,并且应该加速。本文研究了用层次矩阵(h -矩阵)来压缩和加速密集ERBC子矩阵的求值。结果仅限于高阶二维横向磁问题,但表明有效的压缩导致大量的内存和时间节省,甚至可以实现相对较小的问题规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H-matrix compression of discontinous Galerkin method exact radiating boundary conditions
The discontinuous Galerkin method (DGM) is a flexible high-order forward solver for time-harmonic scattering problems in electromagnetics that results in a typically sparse system of linear equations. However, when exact radiating boundary conditions (ERBCs) are used to truncate the computational domain, a dense block is introduced into the DGM system that relates elements on a Huygens surface to elements on the boundary of the computational domain. In the context of iterative solution methods, this dense block can dominate the cost of evaluating matrix-vector-products and should be accelerated. Herein, we investigate the application of Hierarchical Matrices (H-matrices) to compress and accelerate the evaluation of the dense ERBC sub-matrix. Results are limited to high-order 2D transverse magnetic problems but demonstrate that effective compression resulting in substantial memory and time savings can be achieved even for relatively small problem sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信