从谷歌的求职活动预测现在的失业率

J. Dávalos
{"title":"从谷歌的求职活动预测现在的失业率","authors":"J. Dávalos","doi":"10.2139/ssrn.3038007","DOIUrl":null,"url":null,"abstract":"Big data trends, have gained popularity among practitioners for its potential applications on accurate econometric prediction. This paper presents an application where unemployment job search indicators for the G7 countries are based on Google trends data. For each country, a set of google search keywords is identified, then a data reduction technique is applied to estimate our unemployment indicator which is considered a latent common trend. Finally the predictive performance of our indicators is assessed by an automatic stochastic specification with respect to unemployment levels and other key labour market outcomes.","PeriodicalId":289235,"journal":{"name":"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Now-And Forecasting Unemployment from Google's Job-Search Activity\",\"authors\":\"J. Dávalos\",\"doi\":\"10.2139/ssrn.3038007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data trends, have gained popularity among practitioners for its potential applications on accurate econometric prediction. This paper presents an application where unemployment job search indicators for the G7 countries are based on Google trends data. For each country, a set of google search keywords is identified, then a data reduction technique is applied to estimate our unemployment indicator which is considered a latent common trend. Finally the predictive performance of our indicators is assessed by an automatic stochastic specification with respect to unemployment levels and other key labour market outcomes.\",\"PeriodicalId\":289235,\"journal\":{\"name\":\"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)\",\"volume\":\"388 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3038007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3038007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大数据趋势,因其在准确计量经济预测方面的潜在应用而受到实践者的欢迎。本文提出了一个应用程序,其中G7国家的失业工作搜索指标是基于谷歌趋势数据。对于每个国家,确定了一组谷歌搜索关键字,然后应用数据简化技术来估计我们的失业指标,这被认为是潜在的共同趋势。最后,我们的指标的预测性能是通过一个关于失业水平和其他关键劳动力市场结果的自动随机规范来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Now-And Forecasting Unemployment from Google's Job-Search Activity
Big data trends, have gained popularity among practitioners for its potential applications on accurate econometric prediction. This paper presents an application where unemployment job search indicators for the G7 countries are based on Google trends data. For each country, a set of google search keywords is identified, then a data reduction technique is applied to estimate our unemployment indicator which is considered a latent common trend. Finally the predictive performance of our indicators is assessed by an automatic stochastic specification with respect to unemployment levels and other key labour market outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信