{"title":"利用统计最优零滤波器预测蛋白质序列中的热点","authors":"Rajasekhar Kakumani, M. Ahmad, V. Devabhaktuni","doi":"10.1109/NEWCAS.2012.6328971","DOIUrl":null,"url":null,"abstract":"The knowledge of hot-spots locations in protein sequences is crucial for understanding protein functionality. It is known that the hot-spots exhibit a characteristic frequency corresponding to their biological function. In this paper, a new technique using a statistically optimal null filter (SONF) is proposed to predict the locations of hot-spots in proteins. The technique involves detecting the characteristic frequency corresponding to hot-spots of interest. This is achieved using an instantaneous matched filter in SONF which increases the signal-to-noise ratio and the estimation is further improved by using a least squared optimization. Through examples it is shown that the proposed technique is more accurate and reliable as compared to the popular modified Morlet wavelet technique.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of hot-spots in protein sequences using statistically optimal null filters\",\"authors\":\"Rajasekhar Kakumani, M. Ahmad, V. Devabhaktuni\",\"doi\":\"10.1109/NEWCAS.2012.6328971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knowledge of hot-spots locations in protein sequences is crucial for understanding protein functionality. It is known that the hot-spots exhibit a characteristic frequency corresponding to their biological function. In this paper, a new technique using a statistically optimal null filter (SONF) is proposed to predict the locations of hot-spots in proteins. The technique involves detecting the characteristic frequency corresponding to hot-spots of interest. This is achieved using an instantaneous matched filter in SONF which increases the signal-to-noise ratio and the estimation is further improved by using a least squared optimization. Through examples it is shown that the proposed technique is more accurate and reliable as compared to the popular modified Morlet wavelet technique.\",\"PeriodicalId\":122918,\"journal\":{\"name\":\"10th IEEE International NEWCAS Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE International NEWCAS Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2012.6328971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6328971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of hot-spots in protein sequences using statistically optimal null filters
The knowledge of hot-spots locations in protein sequences is crucial for understanding protein functionality. It is known that the hot-spots exhibit a characteristic frequency corresponding to their biological function. In this paper, a new technique using a statistically optimal null filter (SONF) is proposed to predict the locations of hot-spots in proteins. The technique involves detecting the characteristic frequency corresponding to hot-spots of interest. This is achieved using an instantaneous matched filter in SONF which increases the signal-to-noise ratio and the estimation is further improved by using a least squared optimization. Through examples it is shown that the proposed technique is more accurate and reliable as compared to the popular modified Morlet wavelet technique.