C. Soraghan, C. Fan, T. Hayakawa, H. Cronin, T. Foran, Gerard Boyle, R. Kenny, C. Finucane
{"title":"用于流行病学和临床研究中BP反应分析的TILDA信号处理框架(SPF)","authors":"C. Soraghan, C. Fan, T. Hayakawa, H. Cronin, T. Foran, Gerard Boyle, R. Kenny, C. Finucane","doi":"10.1109/BHI.2014.6864483","DOIUrl":null,"url":null,"abstract":"The Irish Longitudinal Study on Ageing (TILDA) collected phasic blood pressure (pBP) data on over 5,000 participants in Wave 1. This required a Signal Processing Framework (SPF) for automating: 1) artefact rejection, and, 2) the extraction of clinically-useful features. The framework developed reduced the workload of the screening clinician by 43%. The work outlined in this paper details key steps in analysing a large dataset of pBP data and highlights the signal processing challenges encountered in modern epidemiological studies.","PeriodicalId":177948,"journal":{"name":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"TILDA Signal Processing Framework (SPF) for the analysis of BP responses to standing in epidemiological and clinical studies\",\"authors\":\"C. Soraghan, C. Fan, T. Hayakawa, H. Cronin, T. Foran, Gerard Boyle, R. Kenny, C. Finucane\",\"doi\":\"10.1109/BHI.2014.6864483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Irish Longitudinal Study on Ageing (TILDA) collected phasic blood pressure (pBP) data on over 5,000 participants in Wave 1. This required a Signal Processing Framework (SPF) for automating: 1) artefact rejection, and, 2) the extraction of clinically-useful features. The framework developed reduced the workload of the screening clinician by 43%. The work outlined in this paper details key steps in analysing a large dataset of pBP data and highlights the signal processing challenges encountered in modern epidemiological studies.\",\"PeriodicalId\":177948,\"journal\":{\"name\":\"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI.2014.6864483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2014.6864483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TILDA Signal Processing Framework (SPF) for the analysis of BP responses to standing in epidemiological and clinical studies
The Irish Longitudinal Study on Ageing (TILDA) collected phasic blood pressure (pBP) data on over 5,000 participants in Wave 1. This required a Signal Processing Framework (SPF) for automating: 1) artefact rejection, and, 2) the extraction of clinically-useful features. The framework developed reduced the workload of the screening clinician by 43%. The work outlined in this paper details key steps in analysing a large dataset of pBP data and highlights the signal processing challenges encountered in modern epidemiological studies.