Yuan Liang, Hao Yu, Junfeng Zhao, Wei Yang, Yuangang Wang
{"title":"具有表面波调制器和互连的高能效低串扰CMOS亚太赫兹I/O","authors":"Yuan Liang, Hao Yu, Junfeng Zhao, Wei Yang, Yuangang Wang","doi":"10.1109/ISLPED.2015.7273499","DOIUrl":null,"url":null,"abstract":"Free-space EM-wave based GHz interconnect has significant loss and crosstalk that cannot be deployed as low-power and dense I/Os for future network-on-chip (NoC) integration of many-core and memory. This paper proposes an energy-efficient and low-crosstalk sub-THz (0.1T-1T) I/O with use of surface-wave based modulator and interconnects in CMOS. By introducing sub-wavelength periodical corrugation structure onto transmission line, the surface-wave is established to propagate signal that is strongly localized on surface of top-layer metal wire, which results in low coupling into lossy substrate and neighboring metal wires. As such, significant power saving and cross-talk reduction can be observed with high communication bandwidth. In addition, a high on/off-ratio surface-wave modulator is also proposed to support on-chip THz communication. As designed in 65nm CMOS, the results have shown that the proposed surface-wave I/O interface achieves 25Gbps data rate and 0.016pJ/bit/mm energy efficiency at 140GHz carrier frequency over 20mm surface-wave channels. They can be placed with 2.4μm channel spacing and a -20dB crosstalk ratio. The surface-wave modulator also achieves significant reduction of radiation loss with 23dB extinction ratio.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An energy efficient and low cross-talk CMOS sub-THz I/O with surface-wave modulator and interconnect\",\"authors\":\"Yuan Liang, Hao Yu, Junfeng Zhao, Wei Yang, Yuangang Wang\",\"doi\":\"10.1109/ISLPED.2015.7273499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free-space EM-wave based GHz interconnect has significant loss and crosstalk that cannot be deployed as low-power and dense I/Os for future network-on-chip (NoC) integration of many-core and memory. This paper proposes an energy-efficient and low-crosstalk sub-THz (0.1T-1T) I/O with use of surface-wave based modulator and interconnects in CMOS. By introducing sub-wavelength periodical corrugation structure onto transmission line, the surface-wave is established to propagate signal that is strongly localized on surface of top-layer metal wire, which results in low coupling into lossy substrate and neighboring metal wires. As such, significant power saving and cross-talk reduction can be observed with high communication bandwidth. In addition, a high on/off-ratio surface-wave modulator is also proposed to support on-chip THz communication. As designed in 65nm CMOS, the results have shown that the proposed surface-wave I/O interface achieves 25Gbps data rate and 0.016pJ/bit/mm energy efficiency at 140GHz carrier frequency over 20mm surface-wave channels. They can be placed with 2.4μm channel spacing and a -20dB crosstalk ratio. The surface-wave modulator also achieves significant reduction of radiation loss with 23dB extinction ratio.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An energy efficient and low cross-talk CMOS sub-THz I/O with surface-wave modulator and interconnect
Free-space EM-wave based GHz interconnect has significant loss and crosstalk that cannot be deployed as low-power and dense I/Os for future network-on-chip (NoC) integration of many-core and memory. This paper proposes an energy-efficient and low-crosstalk sub-THz (0.1T-1T) I/O with use of surface-wave based modulator and interconnects in CMOS. By introducing sub-wavelength periodical corrugation structure onto transmission line, the surface-wave is established to propagate signal that is strongly localized on surface of top-layer metal wire, which results in low coupling into lossy substrate and neighboring metal wires. As such, significant power saving and cross-talk reduction can be observed with high communication bandwidth. In addition, a high on/off-ratio surface-wave modulator is also proposed to support on-chip THz communication. As designed in 65nm CMOS, the results have shown that the proposed surface-wave I/O interface achieves 25Gbps data rate and 0.016pJ/bit/mm energy efficiency at 140GHz carrier frequency over 20mm surface-wave channels. They can be placed with 2.4μm channel spacing and a -20dB crosstalk ratio. The surface-wave modulator also achieves significant reduction of radiation loss with 23dB extinction ratio.