{"title":"基于忆阻交叉棒的低成本分类器及其应用","authors":"Raqibul Hasan, T. Taha","doi":"10.1109/NAECON.2014.7045782","DOIUrl":null,"url":null,"abstract":"Existing studies have demonstrated the use of memristor crossbars for learning linearly separable functions. The memristors are used as analog synaptic weights, thus allowing the memristor crossbar to evaluate a large number of multiplication and addition operations concurrently in the analog domain. Non-linearly separable functions can be implemented by cascading two or more crossbars, with each crossbar implementing a linearly separable function. The training circuits for these cascaded crossbars implementing non-linearly separable functions requires more complex logic than for linearly separable functions. In this paper we have implemented non-linear classifiers utilizing multiple linear separators and thus can utilize a simpler training circuit. We have examined the implementation of Boolean functions and motion detection applications as case studies.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"539 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memristor crossbar based low cost classifiers and their applications\",\"authors\":\"Raqibul Hasan, T. Taha\",\"doi\":\"10.1109/NAECON.2014.7045782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing studies have demonstrated the use of memristor crossbars for learning linearly separable functions. The memristors are used as analog synaptic weights, thus allowing the memristor crossbar to evaluate a large number of multiplication and addition operations concurrently in the analog domain. Non-linearly separable functions can be implemented by cascading two or more crossbars, with each crossbar implementing a linearly separable function. The training circuits for these cascaded crossbars implementing non-linearly separable functions requires more complex logic than for linearly separable functions. In this paper we have implemented non-linear classifiers utilizing multiple linear separators and thus can utilize a simpler training circuit. We have examined the implementation of Boolean functions and motion detection applications as case studies.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"539 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristor crossbar based low cost classifiers and their applications
Existing studies have demonstrated the use of memristor crossbars for learning linearly separable functions. The memristors are used as analog synaptic weights, thus allowing the memristor crossbar to evaluate a large number of multiplication and addition operations concurrently in the analog domain. Non-linearly separable functions can be implemented by cascading two or more crossbars, with each crossbar implementing a linearly separable function. The training circuits for these cascaded crossbars implementing non-linearly separable functions requires more complex logic than for linearly separable functions. In this paper we have implemented non-linear classifiers utilizing multiple linear separators and thus can utilize a simpler training circuit. We have examined the implementation of Boolean functions and motion detection applications as case studies.