计算平均温度的最优算法

S. Foucart, Matthew Hielsberg, G. Mullendore, G. Petrova, P. Wojtaszczyk
{"title":"计算平均温度的最优算法","authors":"S. Foucart, Matthew Hielsberg, G. Mullendore, G. Petrova, P. Wojtaszczyk","doi":"10.1515/mcwf-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract A numerical algorithm is presented for computing average global temperature (or other quantities of interest such as average precipitation) from measurements taken at speci_ed locations and times. The algorithm is proven to be in a certain sense optimal. The analysis of the optimal algorithm provides a sharp a priori bound on the error between the computed value and the true average global temperature. This a priori bound involves a computable compatibility constant which assesses the quality of the measurements for the chosen model. The optimal algorithm is constructed by solving a convex minimization problem and involves a set of functions selected a priori in relation to the model. It is shown that the solution promotes sparsity and hence utilizes a smaller number of well-chosen data sites than those provided. The algorithm is then applied to canonical data sets and mathematically generic models for the computation of average temperature and average precipitation over given regions and given time intervals. A comparison is provided between the proposed algorithms and existing methods.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Algorithms for Computing Average Temperatures\",\"authors\":\"S. Foucart, Matthew Hielsberg, G. Mullendore, G. Petrova, P. Wojtaszczyk\",\"doi\":\"10.1515/mcwf-2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A numerical algorithm is presented for computing average global temperature (or other quantities of interest such as average precipitation) from measurements taken at speci_ed locations and times. The algorithm is proven to be in a certain sense optimal. The analysis of the optimal algorithm provides a sharp a priori bound on the error between the computed value and the true average global temperature. This a priori bound involves a computable compatibility constant which assesses the quality of the measurements for the chosen model. The optimal algorithm is constructed by solving a convex minimization problem and involves a set of functions selected a priori in relation to the model. It is shown that the solution promotes sparsity and hence utilizes a smaller number of well-chosen data sites than those provided. The algorithm is then applied to canonical data sets and mathematically generic models for the computation of average temperature and average precipitation over given regions and given time intervals. A comparison is provided between the proposed algorithms and existing methods.\",\"PeriodicalId\":106200,\"journal\":{\"name\":\"Mathematics of Climate and Weather Forecasting\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Climate and Weather Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcwf-2019-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文提出了一种计算全球平均温度(或其他感兴趣的量,如平均降水)的数值算法。该算法在一定意义上是最优的。对最优算法的分析提供了计算值与真实全球平均温度之间误差的一个明显的先验界。这个先验界涉及一个可计算的兼容性常数,该常数用于评估所选模型的测量质量。该优化算法是通过求解一个凸最小化问题来构建的,涉及到一组与模型相关的先验函数。结果表明,该解决方案提高了稀疏性,因此使用的精心选择的数据站点数量比提供的要少。然后将该算法应用于规范数据集和数学通用模型,用于计算给定区域和给定时间间隔的平均温度和平均降水。将本文提出的算法与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Algorithms for Computing Average Temperatures
Abstract A numerical algorithm is presented for computing average global temperature (or other quantities of interest such as average precipitation) from measurements taken at speci_ed locations and times. The algorithm is proven to be in a certain sense optimal. The analysis of the optimal algorithm provides a sharp a priori bound on the error between the computed value and the true average global temperature. This a priori bound involves a computable compatibility constant which assesses the quality of the measurements for the chosen model. The optimal algorithm is constructed by solving a convex minimization problem and involves a set of functions selected a priori in relation to the model. It is shown that the solution promotes sparsity and hence utilizes a smaller number of well-chosen data sites than those provided. The algorithm is then applied to canonical data sets and mathematically generic models for the computation of average temperature and average precipitation over given regions and given time intervals. A comparison is provided between the proposed algorithms and existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信