{"title":"具有库仑势的朗道方程的局部条件正则性","authors":"Immanuel Ben Porat","doi":"10.3934/krm.2022010","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space <inline-formula><tex-math id=\"M1\">\\begin{document}$ L_{t}^{\\infty}L_{v}^{q} $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M2\">\\begin{document}$ q>3 $\\end{document}</tex-math></inline-formula> in an open cylinder <inline-formula><tex-math id=\"M3\">\\begin{document}$ (0,S)\\times B $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M4\">\\begin{document}$ B $\\end{document}</tex-math></inline-formula> is an open ball of <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathbb{R}^{3} $\\end{document}</tex-math></inline-formula>, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.</p>","PeriodicalId":393586,"journal":{"name":"Kinetic & Related Models","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Local conditional regularity for the Landau equation with Coulomb potential\",\"authors\":\"Immanuel Ben Porat\",\"doi\":\"10.3934/krm.2022010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ L_{t}^{\\\\infty}L_{v}^{q} $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ q>3 $\\\\end{document}</tex-math></inline-formula> in an open cylinder <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ (0,S)\\\\times B $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ B $\\\\end{document}</tex-math></inline-formula> is an open ball of <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\mathbb{R}^{3} $\\\\end{document}</tex-math></inline-formula>, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.</p>\",\"PeriodicalId\":393586,\"journal\":{\"name\":\"Kinetic & Related Models\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic & Related Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic & Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2022010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space \begin{document}$ L_{t}^{\infty}L_{v}^{q} $\end{document} with \begin{document}$ q>3 $\end{document} in an open cylinder \begin{document}$ (0,S)\times B $\end{document}, where \begin{document}$ B $\end{document} is an open ball of \begin{document}$ \mathbb{R}^{3} $\end{document}, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.
Local conditional regularity for the Landau equation with Coulomb potential
This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space \begin{document}$ L_{t}^{\infty}L_{v}^{q} $\end{document} with \begin{document}$ q>3 $\end{document} in an open cylinder \begin{document}$ (0,S)\times B $\end{document}, where \begin{document}$ B $\end{document} is an open ball of \begin{document}$ \mathbb{R}^{3} $\end{document}, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.