Kinetic & Related Models最新文献

筛选
英文 中文
A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles 一般凸粒子玻尔兹曼方程碰撞不变量特征的李代数方法
Kinetic & Related Models Pub Date : 2021-10-20 DOI: 10.3934/krm.2022008
Mark Wilkinson
{"title":"A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles","authors":"Mark Wilkinson","doi":"10.3934/krm.2022008","DOIUrl":"https://doi.org/10.3934/krm.2022008","url":null,"abstract":"<p style='text-indent:20px;'>By studying scattering Lie groups and their associated Lie algebras, we introduce a new method for the characterisation of collision invariants for physical scattering families associated to smooth, convex hard particles in the particular case that the collision invariant is of class <inline-formula><tex-math id=\"M1\">begin{document}$ mathscr{C}^{1} $end{document}</tex-math></inline-formula>. This work extends that of Saint-Raymond and Wilkinson (<i>Communications on Pure and Applied Mathematics</i> (2018), 71(8), pp. 1494–1534), in which the authors characterise collision invariants only in the case of the so-called <i>canonical</i> physical scattering family. Indeed, our method extends to the case of <i>non-canonical</i> physical scattering, whose existence was reported in Wilkinson (<i>Archive for Rational Mechanics and Analysis</i> (2020), 235(3), pp. 2055–2083). Moreover, our new method improves upon the work in Saint-Raymond and Wilkinson as we place no symmetry hypotheses on the underlying non-spherical particles which make up the gas under consideration. The techniques established in this paper also yield a new proof of the result of Boltzmann for collision invariants of class <inline-formula><tex-math id=\"M2\">begin{document}$ mathscr{C}^{1} $end{document}</tex-math></inline-formula> in the classical case of hard spheres.</p>","PeriodicalId":393586,"journal":{"name":"Kinetic &amp; Related Models","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126808420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formal derivation of quantum drift-diffusion equations with spin-orbit interaction 具有自旋-轨道相互作用的量子漂移-扩散方程的形式推导
Kinetic &amp; Related Models Pub Date : 2021-09-20 DOI: 10.3934/krm.2022007
L. Barletti, Philipp Holzinger, A. Jungel
{"title":"Formal derivation of quantum drift-diffusion equations with spin-orbit interaction","authors":"L. Barletti, Philipp Holzinger, A. Jungel","doi":"10.3934/krm.2022007","DOIUrl":"https://doi.org/10.3934/krm.2022007","url":null,"abstract":"Quantum drift-diffusion equations for a two-dimensional electron gas with spin-orbit interactions of Rashba type are formally derived from a collisional Wigner equation. The collisions are modeled by a Bhatnagar–Gross–Krook-type operator describing the relaxation of the electron gas to a local equilibrium that is given by the quantum maximum entropy principle. Because of non-commutativity properties of the operators, the standard diffusion scaling cannot be used in this context, and a hydrodynamic time scaling is required. A Chapman–Enskog procedure leads, up to first order in the relaxation time, to a system of nonlocal quantum drift-diffusion equations for the charge density and spin vector densities. Local equations including the Bohm potential are obtained in the semiclassical expansion up to second order in the scaled Planck constant. The main novelty of this work is that all spin components are considered, while previous models only consider special spin directions.","PeriodicalId":393586,"journal":{"name":"Kinetic &amp; Related Models","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115801128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium 收敛到给定平衡点的最优非对称Fokker-Planck方程
Kinetic &amp; Related Models Pub Date : 2021-06-29 DOI: 10.3934/krm.2022009
A. Arnold, Beatrice Signorello
{"title":"Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium","authors":"A. Arnold, Beatrice Signorello","doi":"10.3934/krm.2022009","DOIUrl":"https://doi.org/10.3934/krm.2022009","url":null,"abstract":"<p style='text-indent:20px;'>This paper is concerned with finding Fokker-Planck equations in <inline-formula><tex-math id=\"M1\">begin{document}$ mathbb{R}^d $end{document}</tex-math></inline-formula> with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum.</p><p style='text-indent:20px;'>Such an \"optimal\" Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an <inline-formula><tex-math id=\"M2\">begin{document}$ L^2 $end{document}</tex-math></inline-formula>–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.</p>","PeriodicalId":393586,"journal":{"name":"Kinetic &amp; Related Models","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127241292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Local conditional regularity for the Landau equation with Coulomb potential 具有库仑势的朗道方程的局部条件正则性
Kinetic &amp; Related Models Pub Date : 2021-05-13 DOI: 10.3934/krm.2022010
Immanuel Ben Porat
{"title":"Local conditional regularity for the Landau equation with Coulomb potential","authors":"Immanuel Ben Porat","doi":"10.3934/krm.2022010","DOIUrl":"https://doi.org/10.3934/krm.2022010","url":null,"abstract":"<p style='text-indent:20px;'>This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space <inline-formula><tex-math id=\"M1\">begin{document}$ L_{t}^{infty}L_{v}^{q} $end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M2\">begin{document}$ q>3 $end{document}</tex-math></inline-formula> in an open cylinder <inline-formula><tex-math id=\"M3\">begin{document}$ (0,S)times B $end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M4\">begin{document}$ B $end{document}</tex-math></inline-formula> is an open ball of <inline-formula><tex-math id=\"M5\">begin{document}$ mathbb{R}^{3} $end{document}</tex-math></inline-formula>, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.</p>","PeriodicalId":393586,"journal":{"name":"Kinetic &amp; Related Models","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133289863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信