基于高阶矩的自适应反卷积和系统辨识

N. Rozario, A. Papoulis
{"title":"基于高阶矩的自适应反卷积和系统辨识","authors":"N. Rozario, A. Papoulis","doi":"10.1109/SPECT.1990.205576","DOIUrl":null,"url":null,"abstract":"Introduces a new method to adaptively deconvolve a linear process. The problem is to obtain the unknown linear system and the underlying white-noise process in a simple adaptive manner. The solution is based on second and higher order moments, and is exceedingly easy to implement. The method is radically different from the familiar gradient-based schemes used in adaptive filtering.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive deconvolution and system identification using higher order moments\",\"authors\":\"N. Rozario, A. Papoulis\",\"doi\":\"10.1109/SPECT.1990.205576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduces a new method to adaptively deconvolve a linear process. The problem is to obtain the unknown linear system and the underlying white-noise process in a simple adaptive manner. The solution is based on second and higher order moments, and is exceedingly easy to implement. The method is radically different from the familiar gradient-based schemes used in adaptive filtering.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种线性过程自适应反卷积的新方法。问题是如何以一种简单的自适应方式获得未知的线性系统和底层的白噪声过程。该解决方案基于二阶矩和高阶矩,并且非常容易实现。该方法与自适应滤波中常用的基于梯度的方法有根本的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive deconvolution and system identification using higher order moments
Introduces a new method to adaptively deconvolve a linear process. The problem is to obtain the unknown linear system and the underlying white-noise process in a simple adaptive manner. The solution is based on second and higher order moments, and is exceedingly easy to implement. The method is radically different from the familiar gradient-based schemes used in adaptive filtering.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信