神经网络中隐藏节点的最优数量

N. Wanas, G. Auda, M. Kamel, F. Karray
{"title":"神经网络中隐藏节点的最优数量","authors":"N. Wanas, G. Auda, M. Kamel, F. Karray","doi":"10.1109/CCECE.1998.685648","DOIUrl":null,"url":null,"abstract":"In this study we show, empirically, that the best performance of a neural network occurs when the number of hidden nodes is equal to log(T), where T is the number of training samples. This value represents the optimal performance of the neural network as well as the optimal associated computational cost. We also show that the measure of entropy in the hidden layer not only gives a good foresight to the performance of the neural network, but can be used as a criteria to optimize the neural network as well. This can be achieved by minimizing the network entropy (i.e. maximizing the entropy in the hidden layer) as a means of modifying the weights of the neural network.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"On the optimal number of hidden nodes in a neural network\",\"authors\":\"N. Wanas, G. Auda, M. Kamel, F. Karray\",\"doi\":\"10.1109/CCECE.1998.685648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we show, empirically, that the best performance of a neural network occurs when the number of hidden nodes is equal to log(T), where T is the number of training samples. This value represents the optimal performance of the neural network as well as the optimal associated computational cost. We also show that the measure of entropy in the hidden layer not only gives a good foresight to the performance of the neural network, but can be used as a criteria to optimize the neural network as well. This can be achieved by minimizing the network entropy (i.e. maximizing the entropy in the hidden layer) as a means of modifying the weights of the neural network.\",\"PeriodicalId\":177613,\"journal\":{\"name\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1998.685648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.685648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

在这项研究中,我们通过经验证明,当隐藏节点的数量等于log(T)时,神经网络的最佳性能出现,其中T是训练样本的数量。该值表示神经网络的最佳性能以及最佳的相关计算成本。我们还表明,隐层熵的度量不仅可以很好地预测神经网络的性能,而且可以作为优化神经网络的标准。这可以通过最小化网络熵(即最大化隐藏层的熵)作为修改神经网络权重的一种手段来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the optimal number of hidden nodes in a neural network
In this study we show, empirically, that the best performance of a neural network occurs when the number of hidden nodes is equal to log(T), where T is the number of training samples. This value represents the optimal performance of the neural network as well as the optimal associated computational cost. We also show that the measure of entropy in the hidden layer not only gives a good foresight to the performance of the neural network, but can be used as a criteria to optimize the neural network as well. This can be achieved by minimizing the network entropy (i.e. maximizing the entropy in the hidden layer) as a means of modifying the weights of the neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信