面向时间动作检测的稀疏方法

Lijuan Wang, Suguo Zhu, Wuteng Qi, Jin Yang
{"title":"面向时间动作检测的稀疏方法","authors":"Lijuan Wang, Suguo Zhu, Wuteng Qi, Jin Yang","doi":"10.1109/ISPACS57703.2022.10082820","DOIUrl":null,"url":null,"abstract":"Temporal action detection aims to correctly predict the categories and temporal intervals of actions in an untrimmed video by using only video-level labels, which is a basic but challenging task in video understanding. Inspired by the work of Sparse R-CNN object detection, we present a purely sparse method in temporal action detection. In our method, a fixed sparse set of learnable temporal proposals, total length of $\\mathbf{N}$ (e.g.50), are provided to dynamic action interaction head to perform classification and localization. Sparse temporal action detection method completely avoids all efforts related to temporal candidates design and many- to-one label assignment. More importantly, final predictions are directly output without non-maximum suppression post-procedure. Extensive experiments show that our method achieves state-of-the-art performance for both action proposal and localization on THUMOS14 detection benchmark and competitive performance on ActivityNet-l.3challenge.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Method Towards Temporal Action Detection\",\"authors\":\"Lijuan Wang, Suguo Zhu, Wuteng Qi, Jin Yang\",\"doi\":\"10.1109/ISPACS57703.2022.10082820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal action detection aims to correctly predict the categories and temporal intervals of actions in an untrimmed video by using only video-level labels, which is a basic but challenging task in video understanding. Inspired by the work of Sparse R-CNN object detection, we present a purely sparse method in temporal action detection. In our method, a fixed sparse set of learnable temporal proposals, total length of $\\\\mathbf{N}$ (e.g.50), are provided to dynamic action interaction head to perform classification and localization. Sparse temporal action detection method completely avoids all efforts related to temporal candidates design and many- to-one label assignment. More importantly, final predictions are directly output without non-maximum suppression post-procedure. Extensive experiments show that our method achieves state-of-the-art performance for both action proposal and localization on THUMOS14 detection benchmark and competitive performance on ActivityNet-l.3challenge.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间动作检测的目的是仅使用视频级标签来正确预测未修剪视频中动作的类别和时间间隔,这是视频理解中一个基本但具有挑战性的任务。受稀疏R-CNN目标检测工作的启发,我们提出了一种纯稀疏的时间动作检测方法。在我们的方法中,为动态动作交互头提供一个固定的可学习时态建议的稀疏集,总长度为$\mathbf{N}$(例如50),以进行分类和定位。稀疏时间动作检测方法完全避免了与时间候选项设计和多对一标签分配相关的所有工作。更重要的是,最终的预测是直接输出的,没有非最大抑制后处理。大量的实验表明,我们的方法在THUMOS14检测基准上实现了最先进的动作提议和定位性能,在activitynet -l.3挑战上实现了竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Method Towards Temporal Action Detection
Temporal action detection aims to correctly predict the categories and temporal intervals of actions in an untrimmed video by using only video-level labels, which is a basic but challenging task in video understanding. Inspired by the work of Sparse R-CNN object detection, we present a purely sparse method in temporal action detection. In our method, a fixed sparse set of learnable temporal proposals, total length of $\mathbf{N}$ (e.g.50), are provided to dynamic action interaction head to perform classification and localization. Sparse temporal action detection method completely avoids all efforts related to temporal candidates design and many- to-one label assignment. More importantly, final predictions are directly output without non-maximum suppression post-procedure. Extensive experiments show that our method achieves state-of-the-art performance for both action proposal and localization on THUMOS14 detection benchmark and competitive performance on ActivityNet-l.3challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信