分层Memcapacitive水库计算架构

S. Tran, C. Teuscher
{"title":"分层Memcapacitive水库计算架构","authors":"S. Tran, C. Teuscher","doi":"10.1109/ICRC.2019.8914716","DOIUrl":null,"url":null,"abstract":"The quest for novel computing architectures is currently driven by (1) machine learning applications and (2) the need to reduce power consumption. To address both needs, we present a novel hierarchical reservoir computing architecture that relies on energy-efficient memcapacitive devices. Reservoir computing is a new brain-inspired machine learning architecture that typically relies on a monolithic, i.e., unstructured, network of devices. We use memcapacitive devices to perform the computations because they do not consume static power. Our results show that hierarchical memcapacitive reservoir computing device networks have a higher kernel quality, outperform monolithic reservoirs by 10%, and reduce the power consumption by a factor of 3.4× on our benchmark tasks. The proposed new architecture is relevant for building novel, adaptive, and power-efficient neuromorphic hardware with applications in embedded systems, the Internet-of-Things, and robotics.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Memcapacitive Reservoir Computing Architecture\",\"authors\":\"S. Tran, C. Teuscher\",\"doi\":\"10.1109/ICRC.2019.8914716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quest for novel computing architectures is currently driven by (1) machine learning applications and (2) the need to reduce power consumption. To address both needs, we present a novel hierarchical reservoir computing architecture that relies on energy-efficient memcapacitive devices. Reservoir computing is a new brain-inspired machine learning architecture that typically relies on a monolithic, i.e., unstructured, network of devices. We use memcapacitive devices to perform the computations because they do not consume static power. Our results show that hierarchical memcapacitive reservoir computing device networks have a higher kernel quality, outperform monolithic reservoirs by 10%, and reduce the power consumption by a factor of 3.4× on our benchmark tasks. The proposed new architecture is relevant for building novel, adaptive, and power-efficient neuromorphic hardware with applications in embedded systems, the Internet-of-Things, and robotics.\",\"PeriodicalId\":297574,\"journal\":{\"name\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2019.8914716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对新型计算架构的追求目前受到以下两方面的驱动:(1)机器学习应用和(2)降低功耗的需求。为了满足这两种需求,我们提出了一种新的分层存储计算架构,该架构依赖于节能的记忆电容器件。水库计算是一种新的大脑启发的机器学习架构,通常依赖于一个单一的,即非结构化的设备网络。我们使用记忆电容器件来执行计算,因为它们不消耗静态功率。我们的研究结果表明,在我们的基准任务中,分层记忆电容储存器计算设备网络具有更高的内核质量,比单片储存器性能高出10%,并将功耗降低了3.4倍。提出的新架构与构建新颖、自适应、节能的神经形态硬件相关,可用于嵌入式系统、物联网和机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Memcapacitive Reservoir Computing Architecture
The quest for novel computing architectures is currently driven by (1) machine learning applications and (2) the need to reduce power consumption. To address both needs, we present a novel hierarchical reservoir computing architecture that relies on energy-efficient memcapacitive devices. Reservoir computing is a new brain-inspired machine learning architecture that typically relies on a monolithic, i.e., unstructured, network of devices. We use memcapacitive devices to perform the computations because they do not consume static power. Our results show that hierarchical memcapacitive reservoir computing device networks have a higher kernel quality, outperform monolithic reservoirs by 10%, and reduce the power consumption by a factor of 3.4× on our benchmark tasks. The proposed new architecture is relevant for building novel, adaptive, and power-efficient neuromorphic hardware with applications in embedded systems, the Internet-of-Things, and robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信