{"title":"区间算法及其应用","authors":"S. Markov","doi":"10.1109/ARITH.1981.6159282","DOIUrl":null,"url":null,"abstract":"It is our point of view that familiar interval arithmetic defined by A∗B={a ∗ b: a ∊ A, b ∊ B}, ∗ ∊{+, −, ×, :} is inefficient in certain respects. For instance, it is not in a position to produce exact representations, of sets of the form {f(x, y, …, z):x ∊ X, y ∊ Y, …, z ∊ Z} even for simple functions f of one variable. We make use of another interval arithmetic which is very convenient for computer computations and for construction of interval algorithms. As an example we consider a method for the construction of interval expressions for sets of the form if {f(x):x ∊[x<inf>1</inf>, x<inf>2</inf>]}, where f is an elementary function.","PeriodicalId":169426,"journal":{"name":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On an interval arithmetic and its applications\",\"authors\":\"S. Markov\",\"doi\":\"10.1109/ARITH.1981.6159282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is our point of view that familiar interval arithmetic defined by A∗B={a ∗ b: a ∊ A, b ∊ B}, ∗ ∊{+, −, ×, :} is inefficient in certain respects. For instance, it is not in a position to produce exact representations, of sets of the form {f(x, y, …, z):x ∊ X, y ∊ Y, …, z ∊ Z} even for simple functions f of one variable. We make use of another interval arithmetic which is very convenient for computer computations and for construction of interval algorithms. As an example we consider a method for the construction of interval expressions for sets of the form if {f(x):x ∊[x<inf>1</inf>, x<inf>2</inf>]}, where f is an elementary function.\",\"PeriodicalId\":169426,\"journal\":{\"name\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1981.6159282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1981.6159282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
我们认为由A∗B={A∗B: A A, B B},∗{+,−,x,:}所定义的区间算法在某些方面是无效的。例如,即使对于单变量的简单函数f,也不能给出{f(x, y,…,z):x x, y y,…,z z}的集合的精确表示。我们利用了另一种区间算法,它对计算机计算和区间算法的构造都非常方便。作为一个例子,我们考虑一种构造形式为if {f(x):x [x1, x2]}的集合的区间表达式的方法,其中f是初等函数。
It is our point of view that familiar interval arithmetic defined by A∗B={a ∗ b: a ∊ A, b ∊ B}, ∗ ∊{+, −, ×, :} is inefficient in certain respects. For instance, it is not in a position to produce exact representations, of sets of the form {f(x, y, …, z):x ∊ X, y ∊ Y, …, z ∊ Z} even for simple functions f of one variable. We make use of another interval arithmetic which is very convenient for computer computations and for construction of interval algorithms. As an example we consider a method for the construction of interval expressions for sets of the form if {f(x):x ∊[x1, x2]}, where f is an elementary function.