基于神经网络的高斯数据增量特征提取

Y. A. Ghassabeh, H. Moghaddam
{"title":"基于神经网络的高斯数据增量特征提取","authors":"Y. A. Ghassabeh, H. Moghaddam","doi":"10.1109/CCA.2007.4389279","DOIUrl":null,"url":null,"abstract":"In this paper, we present new self-organized networks to extract optimal features from multidimensional Gaussian data while preserving class separability. For this purpose, we introduce new adaptive algorithms for the computation of the square root of the inverse covariance matrix Sigma-1/2. Then we construct self-organized networks based on the proposed algorithms and use them for optimal feature extraction from Gaussian data. Convergence proof of the proposed algorithms and networks is given by introducing the related cost function and discussion about its properties. Adaptive nature of the new feature extraction method makes it appropriate for on-line pattern recognition applications. Experimental results using two-class multidimensional Gaussian data demonstrated the effectiveness of the new adaptive feature extraction method.","PeriodicalId":176828,"journal":{"name":"2007 IEEE International Conference on Control Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental Feature Extraction from Gaussian Data using Neural Networks\",\"authors\":\"Y. A. Ghassabeh, H. Moghaddam\",\"doi\":\"10.1109/CCA.2007.4389279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present new self-organized networks to extract optimal features from multidimensional Gaussian data while preserving class separability. For this purpose, we introduce new adaptive algorithms for the computation of the square root of the inverse covariance matrix Sigma-1/2. Then we construct self-organized networks based on the proposed algorithms and use them for optimal feature extraction from Gaussian data. Convergence proof of the proposed algorithms and networks is given by introducing the related cost function and discussion about its properties. Adaptive nature of the new feature extraction method makes it appropriate for on-line pattern recognition applications. Experimental results using two-class multidimensional Gaussian data demonstrated the effectiveness of the new adaptive feature extraction method.\",\"PeriodicalId\":176828,\"journal\":{\"name\":\"2007 IEEE International Conference on Control Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Control Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2007.4389279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2007.4389279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的自组织网络来从多维高斯数据中提取最优特征,同时保持类的可分性。为此,我们引入了新的自适应算法来计算逆协方差矩阵Sigma-1/2的平方根。然后,我们基于所提出的算法构建自组织网络,并将其用于高斯数据的最优特征提取。通过引入相关的代价函数并讨论其性质,给出了算法和网络的收敛性证明。新特征提取方法的自适应特性使其适合在线模式识别应用。基于两类多维高斯数据的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Feature Extraction from Gaussian Data using Neural Networks
In this paper, we present new self-organized networks to extract optimal features from multidimensional Gaussian data while preserving class separability. For this purpose, we introduce new adaptive algorithms for the computation of the square root of the inverse covariance matrix Sigma-1/2. Then we construct self-organized networks based on the proposed algorithms and use them for optimal feature extraction from Gaussian data. Convergence proof of the proposed algorithms and networks is given by introducing the related cost function and discussion about its properties. Adaptive nature of the new feature extraction method makes it appropriate for on-line pattern recognition applications. Experimental results using two-class multidimensional Gaussian data demonstrated the effectiveness of the new adaptive feature extraction method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信