Java中的能源消耗:早期经验

Mohit Kumar, Youhuizi Li, Weisong Shi
{"title":"Java中的能源消耗:早期经验","authors":"Mohit Kumar, Youhuizi Li, Weisong Shi","doi":"10.1109/IGCC.2017.8323579","DOIUrl":null,"url":null,"abstract":"There has been a 10,000-fold increase in performance of supercomputers since 1992 but only 300-fold improvement in performance per watt. Dynamic adaptation of hardware techniques such as fine-grain clock gating, power gating and dynamic voltage/frequency scaling, are used for many years to improve the computer's energy efficiency. However, recent demands of exascale computation, as well as the increasing carbon footprint, require new breakthrough to make ICT systems more energy efficient. Energy efficient software has not been well studied in the last decade. In this paper, we take an early step to investigate the energy efficiency of Java which is one of the most common languages used in ICT systems. We evaluate energy consumption of data types, operators, control statements, exception, and object in Java at a granular level. Intel Running Average Power Limit (RAPL) technology is applied to measure the relative power consumption of small code snippets. Several observations are found, and these results will help in standardizing the energy consumption traits of Java which can be leveraged by software developers to generate energy efficient code in future.","PeriodicalId":133239,"journal":{"name":"2017 Eighth International Green and Sustainable Computing Conference (IGSC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Energy consumption in Java: An early experience\",\"authors\":\"Mohit Kumar, Youhuizi Li, Weisong Shi\",\"doi\":\"10.1109/IGCC.2017.8323579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a 10,000-fold increase in performance of supercomputers since 1992 but only 300-fold improvement in performance per watt. Dynamic adaptation of hardware techniques such as fine-grain clock gating, power gating and dynamic voltage/frequency scaling, are used for many years to improve the computer's energy efficiency. However, recent demands of exascale computation, as well as the increasing carbon footprint, require new breakthrough to make ICT systems more energy efficient. Energy efficient software has not been well studied in the last decade. In this paper, we take an early step to investigate the energy efficiency of Java which is one of the most common languages used in ICT systems. We evaluate energy consumption of data types, operators, control statements, exception, and object in Java at a granular level. Intel Running Average Power Limit (RAPL) technology is applied to measure the relative power consumption of small code snippets. Several observations are found, and these results will help in standardizing the energy consumption traits of Java which can be leveraged by software developers to generate energy efficient code in future.\",\"PeriodicalId\":133239,\"journal\":{\"name\":\"2017 Eighth International Green and Sustainable Computing Conference (IGSC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Eighth International Green and Sustainable Computing Conference (IGSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2017.8323579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Green and Sustainable Computing Conference (IGSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2017.8323579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自1992年以来,超级计算机的性能已经提高了1万倍,但每瓦的性能只提高了300倍。硬件的动态适应技术,如细粒度时钟门控、功率门控和动态电压/频率缩放等,多年来一直用于提高计算机的能效。然而,最近对百亿亿次计算的需求,以及不断增加的碳足迹,需要新的突破,使ICT系统更加节能。在过去的十年里,节能软件并没有得到很好的研究。在本文中,我们采取了早期的步骤来研究Java的能源效率,Java是ICT系统中最常用的语言之一。我们在粒度级别上评估Java中数据类型、操作符、控制语句、异常和对象的能耗。英特尔运行平均功率限制(RAPL)技术用于测量小代码段的相对功耗。我们发现了一些观察结果,这些结果将有助于标准化Java的能耗特征,软件开发人员可以利用这些特征在将来生成节能代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy consumption in Java: An early experience
There has been a 10,000-fold increase in performance of supercomputers since 1992 but only 300-fold improvement in performance per watt. Dynamic adaptation of hardware techniques such as fine-grain clock gating, power gating and dynamic voltage/frequency scaling, are used for many years to improve the computer's energy efficiency. However, recent demands of exascale computation, as well as the increasing carbon footprint, require new breakthrough to make ICT systems more energy efficient. Energy efficient software has not been well studied in the last decade. In this paper, we take an early step to investigate the energy efficiency of Java which is one of the most common languages used in ICT systems. We evaluate energy consumption of data types, operators, control statements, exception, and object in Java at a granular level. Intel Running Average Power Limit (RAPL) technology is applied to measure the relative power consumption of small code snippets. Several observations are found, and these results will help in standardizing the energy consumption traits of Java which can be leveraged by software developers to generate energy efficient code in future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信