使用全卷积架构的驾驶员视觉注意力计算框架

Ashish Tawari, Byeongkeun Kang
{"title":"使用全卷积架构的驾驶员视觉注意力计算框架","authors":"Ashish Tawari, Byeongkeun Kang","doi":"10.1109/IVS.2017.7995828","DOIUrl":null,"url":null,"abstract":"It is a challenging and important task to perceive and interact with other traffic participants in a complex driving environment. The human vision system plays one of the crucial roles to achieve this task. Particularly, visual attention mechanisms allow a human driver to cleverly attend to the salient and relevant regions of the scene to further make necessary decisions for the safe driving. Thus, it is significant to investigate human vision systems with great potential to improve assistive, and even autonomous, vehicular technologies. In this paper, we investigate driver's gaze behavior to understand visual attention. We, first, present a Bayesian framework to model visual attention of a human driver. Further, based on the framework, we develop a fully convolutional neural network to estimate the salient region in a novel driving scene. We systematically evaluate the proposed method using on-road driving data and compare it with other state-of-the-art saliency estimation approaches. Our analyses show promising results.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A computational framework for driver's visual attention using a fully convolutional architecture\",\"authors\":\"Ashish Tawari, Byeongkeun Kang\",\"doi\":\"10.1109/IVS.2017.7995828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenging and important task to perceive and interact with other traffic participants in a complex driving environment. The human vision system plays one of the crucial roles to achieve this task. Particularly, visual attention mechanisms allow a human driver to cleverly attend to the salient and relevant regions of the scene to further make necessary decisions for the safe driving. Thus, it is significant to investigate human vision systems with great potential to improve assistive, and even autonomous, vehicular technologies. In this paper, we investigate driver's gaze behavior to understand visual attention. We, first, present a Bayesian framework to model visual attention of a human driver. Further, based on the framework, we develop a fully convolutional neural network to estimate the salient region in a novel driving scene. We systematically evaluate the proposed method using on-road driving data and compare it with other state-of-the-art saliency estimation approaches. Our analyses show promising results.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在复杂的驾驶环境中感知其他交通参与者并与之互动是一项具有挑战性和重要的任务。人类视觉系统在完成这一任务中起着至关重要的作用。特别是,视觉注意机制使人类驾驶员能够巧妙地关注场景的突出和相关区域,从而进一步做出必要的决定,以确保安全驾驶。因此,研究具有巨大潜力的人类视觉系统,以改进辅助甚至自动驾驶汽车技术,具有重要意义。本文通过对驾驶员注视行为的研究来理解驾驶员的视觉注意。首先,我们提出了一个贝叶斯框架来模拟人类驾驶员的视觉注意力。此外,基于该框架,我们开发了一个全卷积神经网络来估计新的驾驶场景中的显著区域。我们使用道路驾驶数据系统地评估了所提出的方法,并将其与其他最先进的显著性估计方法进行了比较。我们的分析显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational framework for driver's visual attention using a fully convolutional architecture
It is a challenging and important task to perceive and interact with other traffic participants in a complex driving environment. The human vision system plays one of the crucial roles to achieve this task. Particularly, visual attention mechanisms allow a human driver to cleverly attend to the salient and relevant regions of the scene to further make necessary decisions for the safe driving. Thus, it is significant to investigate human vision systems with great potential to improve assistive, and even autonomous, vehicular technologies. In this paper, we investigate driver's gaze behavior to understand visual attention. We, first, present a Bayesian framework to model visual attention of a human driver. Further, based on the framework, we develop a fully convolutional neural network to estimate the salient region in a novel driving scene. We systematically evaluate the proposed method using on-road driving data and compare it with other state-of-the-art saliency estimation approaches. Our analyses show promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信