基于Malliavin演算的高维非线性抛物型偏微分方程的深度学习高阶算子分裂方法:在CVA计算中的应用

Riu Naito, Toshihiro Yamada
{"title":"基于Malliavin演算的高维非线性抛物型偏微分方程的深度学习高阶算子分裂方法:在CVA计算中的应用","authors":"Riu Naito, Toshihiro Yamada","doi":"10.1109/CIFEr52523.2022.9776096","DOIUrl":null,"url":null,"abstract":"The paper introduces a deep learning-based high-order operator splitting method for nonlinear parabolic partial differential equations (PDEs) by using a Malliavin calculus approach. Through the method, a solution of a nonlinear PDE is accurately approximated even when the dimension of the PDE is high. As an application, the method is applied to the CVA computation in high-dimensional finance models. Numerical experiments performed on GPUs show the efficiency of the proposed method.","PeriodicalId":234473,"journal":{"name":"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based high-order operator splitting method for high-dimensional nonlinear parabolic PDEs via Malliavin calculus: application to CVA computation\",\"authors\":\"Riu Naito, Toshihiro Yamada\",\"doi\":\"10.1109/CIFEr52523.2022.9776096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a deep learning-based high-order operator splitting method for nonlinear parabolic partial differential equations (PDEs) by using a Malliavin calculus approach. Through the method, a solution of a nonlinear PDE is accurately approximated even when the dimension of the PDE is high. As an application, the method is applied to the CVA computation in high-dimensional finance models. Numerical experiments performed on GPUs show the efficiency of the proposed method.\",\"PeriodicalId\":234473,\"journal\":{\"name\":\"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFEr52523.2022.9776096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFEr52523.2022.9776096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于深度学习的非线性抛物型偏微分方程的高阶算子分裂方法。通过该方法,即使非线性偏微分方程的维数很高,也能精确地逼近解。将该方法应用于高维金融模型的CVA计算。在图形处理器上进行的数值实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning-based high-order operator splitting method for high-dimensional nonlinear parabolic PDEs via Malliavin calculus: application to CVA computation
The paper introduces a deep learning-based high-order operator splitting method for nonlinear parabolic partial differential equations (PDEs) by using a Malliavin calculus approach. Through the method, a solution of a nonlinear PDE is accurately approximated even when the dimension of the PDE is high. As an application, the method is applied to the CVA computation in high-dimensional finance models. Numerical experiments performed on GPUs show the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信