自适应滤波器预测车辆侧滑角未来值的性能

R. Shavelis, K. Ozols, M. Greitans, Vitālijs Feščenko
{"title":"自适应滤波器预测车辆侧滑角未来值的性能","authors":"R. Shavelis, K. Ozols, M. Greitans, Vitālijs Feščenko","doi":"10.1109/BEC.2018.8600993","DOIUrl":null,"url":null,"abstract":"In this paper a performance of conventional adaptive finite impulse response filters and a feed forward multi-layer neural network is examined for predicting the future values of the slip angle of a vehicle. The obtained results depending on a number of inputs and a prediction horizon are compared in terms of prediction error and a required number of operations for executing the algorithms.","PeriodicalId":140384,"journal":{"name":"2018 16th Biennial Baltic Electronics Conference (BEC)","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Adaptive Filters for Predicting the Future Values of the Vehicle Sideslip Angle\",\"authors\":\"R. Shavelis, K. Ozols, M. Greitans, Vitālijs Feščenko\",\"doi\":\"10.1109/BEC.2018.8600993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a performance of conventional adaptive finite impulse response filters and a feed forward multi-layer neural network is examined for predicting the future values of the slip angle of a vehicle. The obtained results depending on a number of inputs and a prediction horizon are compared in terms of prediction error and a required number of operations for executing the algorithms.\",\"PeriodicalId\":140384,\"journal\":{\"name\":\"2018 16th Biennial Baltic Electronics Conference (BEC)\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th Biennial Baltic Electronics Conference (BEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BEC.2018.8600993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th Biennial Baltic Electronics Conference (BEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2018.8600993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了传统的自适应有限脉冲响应滤波器和前馈多层神经网络预测车辆未来滑移角的性能。根据预测误差和执行算法所需的操作数来比较依赖于许多输入和预测范围的获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Adaptive Filters for Predicting the Future Values of the Vehicle Sideslip Angle
In this paper a performance of conventional adaptive finite impulse response filters and a feed forward multi-layer neural network is examined for predicting the future values of the slip angle of a vehicle. The obtained results depending on a number of inputs and a prediction horizon are compared in terms of prediction error and a required number of operations for executing the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信