V. Kotlyar, A. Nalimov, S. Stafeev, L. O’Faolain, E. Kozlova
{"title":"亚波长聚焦的超透镜","authors":"V. Kotlyar, A. Nalimov, S. Stafeev, L. O’Faolain, E. Kozlova","doi":"10.1109/PIERS.2017.8261716","DOIUrl":null,"url":null,"abstract":"We designed, fabricated, and characterized a thin metalens in an amorphous silicon film of diameter 30 μm, focal length equal to the incident wavelength 633 nm. The lens is capable of simultaneously manipulating the state of polarization and phase of incident light. The lens converts a linearly polarized beam into radially polarized light, producing a subwavelength focus. When illuminated with a linearly polarized Gaussian beam, the lens produces a focal spot whose size at full-width half-maximum intensity is 0.49λ and 0.55λ (λ is incident wavelength). The experimental results are in good agreement with the numerical simulation, with the simulated focal spot measuring 0.46λ and 0.52λ. This focal spot is less than all other focal spots obtained using metalenses.","PeriodicalId":387984,"journal":{"name":"2017 Progress In Electromagnetics Research Symposium - Spring (PIERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metalens for subwavelength focus of light\",\"authors\":\"V. Kotlyar, A. Nalimov, S. Stafeev, L. O’Faolain, E. Kozlova\",\"doi\":\"10.1109/PIERS.2017.8261716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We designed, fabricated, and characterized a thin metalens in an amorphous silicon film of diameter 30 μm, focal length equal to the incident wavelength 633 nm. The lens is capable of simultaneously manipulating the state of polarization and phase of incident light. The lens converts a linearly polarized beam into radially polarized light, producing a subwavelength focus. When illuminated with a linearly polarized Gaussian beam, the lens produces a focal spot whose size at full-width half-maximum intensity is 0.49λ and 0.55λ (λ is incident wavelength). The experimental results are in good agreement with the numerical simulation, with the simulated focal spot measuring 0.46λ and 0.52λ. This focal spot is less than all other focal spots obtained using metalenses.\",\"PeriodicalId\":387984,\"journal\":{\"name\":\"2017 Progress In Electromagnetics Research Symposium - Spring (PIERS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Progress In Electromagnetics Research Symposium - Spring (PIERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIERS.2017.8261716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Progress In Electromagnetics Research Symposium - Spring (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS.2017.8261716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We designed, fabricated, and characterized a thin metalens in an amorphous silicon film of diameter 30 μm, focal length equal to the incident wavelength 633 nm. The lens is capable of simultaneously manipulating the state of polarization and phase of incident light. The lens converts a linearly polarized beam into radially polarized light, producing a subwavelength focus. When illuminated with a linearly polarized Gaussian beam, the lens produces a focal spot whose size at full-width half-maximum intensity is 0.49λ and 0.55λ (λ is incident wavelength). The experimental results are in good agreement with the numerical simulation, with the simulated focal spot measuring 0.46λ and 0.52λ. This focal spot is less than all other focal spots obtained using metalenses.