F. L. Roubieu, F. Expert, M. Boyron, Benoit-Jeremy Fuschlock, S. Viollet, F. Ruffier
{"title":"一种基于1克昆虫的新型装置,可测量沿5个光学方向的视觉运动","authors":"F. L. Roubieu, F. Expert, M. Boyron, Benoit-Jeremy Fuschlock, S. Viollet, F. Ruffier","doi":"10.1109/ICSENS.2011.6127157","DOIUrl":null,"url":null,"abstract":"Autopilots for micro aerial vehicles (MAVs) with a maximum permissible avionic payload of only a few grams need lightweight, low-power sensors to be able to navigate safely when flying through unknown environments. To meet these demanding specifications, we developed a simple functional model for an Elementary Motion Detector (EMD) circuit based on the common housefly's visual system. During the last two decades, several insect-based visual motion sensors have been designed and implemented on various robots, and considerable improvements have been made in terms of their mass, size and power consumption. The new lightweight visual motion sensor presented here generates 5 simultaneous neighboring measurements of the 1-D angular speed of a natural scene within a measurement range of more than one decade [25°/s; 350°/s]. Using a new sensory fusion method consisting in computing the median value of the 5 local motion units, we ended up with a more robust, more accurate and more frequently refreshed measurement of the 1-D angular speed.","PeriodicalId":201386,"journal":{"name":"2011 IEEE SENSORS Proceedings","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A novel 1-gram insect based device measuring visual motion along 5 optical directions\",\"authors\":\"F. L. Roubieu, F. Expert, M. Boyron, Benoit-Jeremy Fuschlock, S. Viollet, F. Ruffier\",\"doi\":\"10.1109/ICSENS.2011.6127157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autopilots for micro aerial vehicles (MAVs) with a maximum permissible avionic payload of only a few grams need lightweight, low-power sensors to be able to navigate safely when flying through unknown environments. To meet these demanding specifications, we developed a simple functional model for an Elementary Motion Detector (EMD) circuit based on the common housefly's visual system. During the last two decades, several insect-based visual motion sensors have been designed and implemented on various robots, and considerable improvements have been made in terms of their mass, size and power consumption. The new lightweight visual motion sensor presented here generates 5 simultaneous neighboring measurements of the 1-D angular speed of a natural scene within a measurement range of more than one decade [25°/s; 350°/s]. Using a new sensory fusion method consisting in computing the median value of the 5 local motion units, we ended up with a more robust, more accurate and more frequently refreshed measurement of the 1-D angular speed.\",\"PeriodicalId\":201386,\"journal\":{\"name\":\"2011 IEEE SENSORS Proceedings\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE SENSORS Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2011.6127157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE SENSORS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2011.6127157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel 1-gram insect based device measuring visual motion along 5 optical directions
Autopilots for micro aerial vehicles (MAVs) with a maximum permissible avionic payload of only a few grams need lightweight, low-power sensors to be able to navigate safely when flying through unknown environments. To meet these demanding specifications, we developed a simple functional model for an Elementary Motion Detector (EMD) circuit based on the common housefly's visual system. During the last two decades, several insect-based visual motion sensors have been designed and implemented on various robots, and considerable improvements have been made in terms of their mass, size and power consumption. The new lightweight visual motion sensor presented here generates 5 simultaneous neighboring measurements of the 1-D angular speed of a natural scene within a measurement range of more than one decade [25°/s; 350°/s]. Using a new sensory fusion method consisting in computing the median value of the 5 local motion units, we ended up with a more robust, more accurate and more frequently refreshed measurement of the 1-D angular speed.