三维离散小波变换高吞吐量实现的并发收缩结构

B. K. Mohanty, P. Meher
{"title":"三维离散小波变换高吞吐量实现的并发收缩结构","authors":"B. K. Mohanty, P. Meher","doi":"10.1109/ASAP.2008.4580172","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel systolic architecture for high-throughput computation of 3-dimensional (3-D) discrete wavelet transform (DWT). The entire 3-D DWT computation is decomposed into three distinct stages and implemented concurrently in a linear array of fully pipelined processing elements (PE). The proposed structure for 3-D DWT provides higher throughput than the existing architecture; and involves nearly half or less the number of multipliers and adders; and less on-chip memory (when normalized for unit throughput rate) than the other. Most importantly, the proposed one does not require any frame buffer unlike the other to perform inter-frame DWT computation. The proposed structure has a small latency and can perform 3-D DWT computation with 100% hardware unitization efficiency.","PeriodicalId":246715,"journal":{"name":"2008 International Conference on Application-Specific Systems, Architectures and Processors","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Concurrent systolic architecture for high-throughput implementation of 3-dimensional discrete wavelet transform\",\"authors\":\"B. K. Mohanty, P. Meher\",\"doi\":\"10.1109/ASAP.2008.4580172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel systolic architecture for high-throughput computation of 3-dimensional (3-D) discrete wavelet transform (DWT). The entire 3-D DWT computation is decomposed into three distinct stages and implemented concurrently in a linear array of fully pipelined processing elements (PE). The proposed structure for 3-D DWT provides higher throughput than the existing architecture; and involves nearly half or less the number of multipliers and adders; and less on-chip memory (when normalized for unit throughput rate) than the other. Most importantly, the proposed one does not require any frame buffer unlike the other to perform inter-frame DWT computation. The proposed structure has a small latency and can perform 3-D DWT computation with 100% hardware unitization efficiency.\",\"PeriodicalId\":246715,\"journal\":{\"name\":\"2008 International Conference on Application-Specific Systems, Architectures and Processors\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Application-Specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2008.4580172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Application-Specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2008.4580172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种新的三维离散小波变换(DWT)高通量计算的收缩结构。整个三维DWT计算被分解为三个不同的阶段,并在全流水线处理单元(PE)的线性阵列中并行实现。所提出的三维DWT结构比现有结构具有更高的吞吐量;它包含的乘法器和加法器的数量接近一半或更少;而且片上内存(按单位吞吐率标准化时)也比另一个少。最重要的是,与另一种算法不同,该算法不需要任何帧缓冲区来执行帧间DWT计算。该结构具有较小的延迟,能够以100%的硬件单元效率进行三维DWT计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent systolic architecture for high-throughput implementation of 3-dimensional discrete wavelet transform
In this paper, we present a novel systolic architecture for high-throughput computation of 3-dimensional (3-D) discrete wavelet transform (DWT). The entire 3-D DWT computation is decomposed into three distinct stages and implemented concurrently in a linear array of fully pipelined processing elements (PE). The proposed structure for 3-D DWT provides higher throughput than the existing architecture; and involves nearly half or less the number of multipliers and adders; and less on-chip memory (when normalized for unit throughput rate) than the other. Most importantly, the proposed one does not require any frame buffer unlike the other to perform inter-frame DWT computation. The proposed structure has a small latency and can perform 3-D DWT computation with 100% hardware unitization efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信