高精度异常分类的概率程序建模

Kui Xu, D. Yao, B. Ryder, K. Tian
{"title":"高精度异常分类的概率程序建模","authors":"Kui Xu, D. Yao, B. Ryder, K. Tian","doi":"10.1109/CSF.2015.37","DOIUrl":null,"url":null,"abstract":"The trend constantly being observed in the evolution of advanced modern exploits is their growing sophistication in stealthy attacks. Code-reuse attacks such as return-oriented programming allow intruders to execute mal-intended instruction sequences on a victim machine without injecting external code. We introduce a new anomaly-based detection technique that probabilistically models and learns a program's control flows for high-precision behavioral reasoning and monitoring. Our prototype in Linux is named STILO, which stands for STatically InitiaLized markOv. Experimental evaluation involves real-world code-reuse exploits and over 4,000 testcases from server and utility programs. STILO achieves up to 28-fold of improvement in detection accuracy over the state-of-the-art HMM-based anomaly detection. Our findings suggest that the probabilistic modeling of program dependences provides a significant source of behavior information for building high-precision models for real-time system monitoring.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Probabilistic Program Modeling for High-Precision Anomaly Classification\",\"authors\":\"Kui Xu, D. Yao, B. Ryder, K. Tian\",\"doi\":\"10.1109/CSF.2015.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trend constantly being observed in the evolution of advanced modern exploits is their growing sophistication in stealthy attacks. Code-reuse attacks such as return-oriented programming allow intruders to execute mal-intended instruction sequences on a victim machine without injecting external code. We introduce a new anomaly-based detection technique that probabilistically models and learns a program's control flows for high-precision behavioral reasoning and monitoring. Our prototype in Linux is named STILO, which stands for STatically InitiaLized markOv. Experimental evaluation involves real-world code-reuse exploits and over 4,000 testcases from server and utility programs. STILO achieves up to 28-fold of improvement in detection accuracy over the state-of-the-art HMM-based anomaly detection. Our findings suggest that the probabilistic modeling of program dependences provides a significant source of behavior information for building high-precision models for real-time system monitoring.\",\"PeriodicalId\":210917,\"journal\":{\"name\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2015.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

在先进的现代攻击演变中不断观察到的趋势是,它们在隐形攻击方面越来越复杂。代码重用攻击(如面向返回的编程)允许入侵者在不注入外部代码的情况下在受害机器上执行错误的指令序列。我们介绍了一种新的基于异常的检测技术,该技术对程序的控制流进行概率建模和学习,用于高精度的行为推理和监控。我们在Linux中的原型被命名为STILO,它代表静态初始化马尔科夫。实验评估包括真实世界的代码重用漏洞和来自服务器和实用程序的4000多个测试用例。与最先进的基于hmm的异常检测相比,STILO的检测精度提高了28倍。我们的研究结果表明,程序依赖关系的概率建模为构建用于实时系统监控的高精度模型提供了重要的行为信息来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Program Modeling for High-Precision Anomaly Classification
The trend constantly being observed in the evolution of advanced modern exploits is their growing sophistication in stealthy attacks. Code-reuse attacks such as return-oriented programming allow intruders to execute mal-intended instruction sequences on a victim machine without injecting external code. We introduce a new anomaly-based detection technique that probabilistically models and learns a program's control flows for high-precision behavioral reasoning and monitoring. Our prototype in Linux is named STILO, which stands for STatically InitiaLized markOv. Experimental evaluation involves real-world code-reuse exploits and over 4,000 testcases from server and utility programs. STILO achieves up to 28-fold of improvement in detection accuracy over the state-of-the-art HMM-based anomaly detection. Our findings suggest that the probabilistic modeling of program dependences provides a significant source of behavior information for building high-precision models for real-time system monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信