基于目标函数的自适应滤波参数优化

I. Popov
{"title":"基于目标函数的自适应滤波参数优化","authors":"I. Popov","doi":"10.1109/SIELA54794.2022.9845774","DOIUrl":null,"url":null,"abstract":"Wave filtering is one of the mandatory features of the state estimators in a dynamic position system. The optimization of statistical parameters of these state estimators can be done by covariance matching algorithms and appropriate objective (cost) functions. The proposed cost function has predictive behavior, based on some tuning parameters, which control the quality of wave filtering. These parameters assure convergence of the solution and consistent results in different adaptive algorithms based on the Kalman filter framework as AKF, AEKF, and AUKF.","PeriodicalId":150282,"journal":{"name":"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric optimization of adaptive wave filter using an objective function\",\"authors\":\"I. Popov\",\"doi\":\"10.1109/SIELA54794.2022.9845774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wave filtering is one of the mandatory features of the state estimators in a dynamic position system. The optimization of statistical parameters of these state estimators can be done by covariance matching algorithms and appropriate objective (cost) functions. The proposed cost function has predictive behavior, based on some tuning parameters, which control the quality of wave filtering. These parameters assure convergence of the solution and consistent results in different adaptive algorithms based on the Kalman filter framework as AKF, AEKF, and AUKF.\",\"PeriodicalId\":150282,\"journal\":{\"name\":\"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIELA54794.2022.9845774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIELA54794.2022.9845774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

波滤波是动态位置系统状态估计器的必备特性之一。这些状态估计器的统计参数的优化可以通过协方差匹配算法和适当的目标(代价)函数来完成。所提出的代价函数具有预测行为,基于一些调节参数,控制滤波的质量。这些参数保证了在基于AKF、AEKF和AUKF等卡尔曼滤波框架的不同自适应算法中解的收敛性和结果的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric optimization of adaptive wave filter using an objective function
Wave filtering is one of the mandatory features of the state estimators in a dynamic position system. The optimization of statistical parameters of these state estimators can be done by covariance matching algorithms and appropriate objective (cost) functions. The proposed cost function has predictive behavior, based on some tuning parameters, which control the quality of wave filtering. These parameters assure convergence of the solution and consistent results in different adaptive algorithms based on the Kalman filter framework as AKF, AEKF, and AUKF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信