Takanori Yamashita, Y. Wakata, N. Nakashima, S. Hirokawa, S. Hamai, Y. Nakashima, Y. Iwamoto
{"title":"从手术记录中提取术后住院时间的决定因素","authors":"Takanori Yamashita, Y. Wakata, N. Nakashima, S. Hirokawa, S. Hamai, Y. Nakashima, Y. Iwamoto","doi":"10.1109/IWECA.2014.6845748","DOIUrl":null,"url":null,"abstract":"Secondary use of clinical text data are gaining much attention in improving the quality and the efficiency of medical treatment. Although there is some case studies of medical-examination text data, there are not many examples fed back to the medical-examination spot. The present paper analyses the operation records of total hip arthroplasty. We extracted feature words that characterize the two peaks which appeared in distribution of postoperative hospital days using SVM (support vector machine) and FS (feature selection). The models gained by optimal FS attained 60% accuracy as prediction performance. We applied logistic regression analysis to estimate postoperative length of stay from the extracted feature words. Most words were not statistically significant except two words.","PeriodicalId":383024,"journal":{"name":"2014 IEEE Workshop on Electronics, Computer and Applications","volume":"370 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extraction of determinants of postoperative length of stay from operation records\",\"authors\":\"Takanori Yamashita, Y. Wakata, N. Nakashima, S. Hirokawa, S. Hamai, Y. Nakashima, Y. Iwamoto\",\"doi\":\"10.1109/IWECA.2014.6845748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secondary use of clinical text data are gaining much attention in improving the quality and the efficiency of medical treatment. Although there is some case studies of medical-examination text data, there are not many examples fed back to the medical-examination spot. The present paper analyses the operation records of total hip arthroplasty. We extracted feature words that characterize the two peaks which appeared in distribution of postoperative hospital days using SVM (support vector machine) and FS (feature selection). The models gained by optimal FS attained 60% accuracy as prediction performance. We applied logistic regression analysis to estimate postoperative length of stay from the extracted feature words. Most words were not statistically significant except two words.\",\"PeriodicalId\":383024,\"journal\":{\"name\":\"2014 IEEE Workshop on Electronics, Computer and Applications\",\"volume\":\"370 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Workshop on Electronics, Computer and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWECA.2014.6845748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Electronics, Computer and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWECA.2014.6845748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extraction of determinants of postoperative length of stay from operation records
Secondary use of clinical text data are gaining much attention in improving the quality and the efficiency of medical treatment. Although there is some case studies of medical-examination text data, there are not many examples fed back to the medical-examination spot. The present paper analyses the operation records of total hip arthroplasty. We extracted feature words that characterize the two peaks which appeared in distribution of postoperative hospital days using SVM (support vector machine) and FS (feature selection). The models gained by optimal FS attained 60% accuracy as prediction performance. We applied logistic regression analysis to estimate postoperative length of stay from the extracted feature words. Most words were not statistically significant except two words.