Wei Jiang, Xinglong Zhang, Zhen Zuo, Meiping Shi, Shaojing Su
{"title":"非线性机器人系统的基于核库普曼算子的数据驱动卡尔曼滤波","authors":"Wei Jiang, Xinglong Zhang, Zhen Zuo, Meiping Shi, Shaojing Su","doi":"10.1109/IROS47612.2022.9981408","DOIUrl":null,"url":null,"abstract":"Designing the Kalman filter for nonlinear robot systems with theoretical guarantees is challenging, especially when the dynamics model is unavailable. This paper proposes a data-driven Kalman filter algorithm using kernel-based Koop-man operators for unknown nonlinear robot systems. First, the Koopman operator using sparse kernel-based extended dynamic decomposition (EDMD) is presented to learn the unknown dynamics with input-output datasets. Unlike classic EDMD, which requires manual selection of kernel functions, our approach automatically constructs kernel functions using an approximate linear dependency analysis method. The resulting Koopman model is a linear dynamic evolution in the kernel space, enabling us to address the nonlinear filtering problem using the standard linear Kalman filter design process. Despite this, our approach generates a nonlinear filtering law thanks to the adopted nonlinear kernel functions. Finally, the effectiveness of the proposed approach is validated by simulated experiments.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Kalman Filter with Kernel-based Koopman Operators for Nonlinear Robot Systems\",\"authors\":\"Wei Jiang, Xinglong Zhang, Zhen Zuo, Meiping Shi, Shaojing Su\",\"doi\":\"10.1109/IROS47612.2022.9981408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing the Kalman filter for nonlinear robot systems with theoretical guarantees is challenging, especially when the dynamics model is unavailable. This paper proposes a data-driven Kalman filter algorithm using kernel-based Koop-man operators for unknown nonlinear robot systems. First, the Koopman operator using sparse kernel-based extended dynamic decomposition (EDMD) is presented to learn the unknown dynamics with input-output datasets. Unlike classic EDMD, which requires manual selection of kernel functions, our approach automatically constructs kernel functions using an approximate linear dependency analysis method. The resulting Koopman model is a linear dynamic evolution in the kernel space, enabling us to address the nonlinear filtering problem using the standard linear Kalman filter design process. Despite this, our approach generates a nonlinear filtering law thanks to the adopted nonlinear kernel functions. Finally, the effectiveness of the proposed approach is validated by simulated experiments.\",\"PeriodicalId\":431373,\"journal\":{\"name\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS47612.2022.9981408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-driven Kalman Filter with Kernel-based Koopman Operators for Nonlinear Robot Systems
Designing the Kalman filter for nonlinear robot systems with theoretical guarantees is challenging, especially when the dynamics model is unavailable. This paper proposes a data-driven Kalman filter algorithm using kernel-based Koop-man operators for unknown nonlinear robot systems. First, the Koopman operator using sparse kernel-based extended dynamic decomposition (EDMD) is presented to learn the unknown dynamics with input-output datasets. Unlike classic EDMD, which requires manual selection of kernel functions, our approach automatically constructs kernel functions using an approximate linear dependency analysis method. The resulting Koopman model is a linear dynamic evolution in the kernel space, enabling us to address the nonlinear filtering problem using the standard linear Kalman filter design process. Despite this, our approach generates a nonlinear filtering law thanks to the adopted nonlinear kernel functions. Finally, the effectiveness of the proposed approach is validated by simulated experiments.