测试自动化革命假说

Keller Scholl, R. Hanson
{"title":"测试自动化革命假说","authors":"Keller Scholl, R. Hanson","doi":"10.2139/ssrn.3496364","DOIUrl":null,"url":null,"abstract":"Wages and employment predict automation in 832 U.S. jobs, 1999 to 2019, but add little to top 25 O*NET job features, whose best predictive model did not change over this period. Automation changes predict changes in neither wages nor employment.","PeriodicalId":243052,"journal":{"name":"Robotics eJournal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Testing the Automation Revolution Hypothesis\",\"authors\":\"Keller Scholl, R. Hanson\",\"doi\":\"10.2139/ssrn.3496364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wages and employment predict automation in 832 U.S. jobs, 1999 to 2019, but add little to top 25 O*NET job features, whose best predictive model did not change over this period. Automation changes predict changes in neither wages nor employment.\",\"PeriodicalId\":243052,\"journal\":{\"name\":\"Robotics eJournal\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3496364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3496364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从1999年到2019年,工资和就业可以预测832个美国工作岗位的自动化情况,但在O*NET排名前25位的工作特征中几乎没有增加,其最佳预测模型在此期间没有变化。自动化的变化既不能预测工资的变化,也不能预测就业的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the Automation Revolution Hypothesis
Wages and employment predict automation in 832 U.S. jobs, 1999 to 2019, but add little to top 25 O*NET job features, whose best predictive model did not change over this period. Automation changes predict changes in neither wages nor employment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信