{"title":"金融密度预测:风险中性和历史方案的综合比较","authors":"Ricardo Crisóstomo, L. Couso","doi":"10.2139/ssrn.3034270","DOIUrl":null,"url":null,"abstract":"We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations- by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GRJ-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Financial Density Forecasts: A Comprehensive Comparison of Risk-Neutral and Historical Schemes\",\"authors\":\"Ricardo Crisóstomo, L. Couso\",\"doi\":\"10.2139/ssrn.3034270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations- by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GRJ-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.\",\"PeriodicalId\":177064,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3034270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3034270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Financial Density Forecasts: A Comprehensive Comparison of Risk-Neutral and Historical Schemes
We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations- by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GRJ-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.