金融密度预测:风险中性和历史方案的综合比较

Ricardo Crisóstomo, L. Couso
{"title":"金融密度预测:风险中性和历史方案的综合比较","authors":"Ricardo Crisóstomo, L. Couso","doi":"10.2139/ssrn.3034270","DOIUrl":null,"url":null,"abstract":"We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations- by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GRJ-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Financial Density Forecasts: A Comprehensive Comparison of Risk-Neutral and Historical Schemes\",\"authors\":\"Ricardo Crisóstomo, L. Couso\",\"doi\":\"10.2139/ssrn.3034270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations- by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GRJ-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.\",\"PeriodicalId\":177064,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3034270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3034270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了金融经济学中最常用的基准的预测能力。我们通过在超过21年的时间内对15种预测方案进行全面比较,接近概率预测研究的通常警告-小样本,有限模型和非整体验证。所有密度都是根据其统计一致性、局部准确性和预测误差来评估的。使用一个新的指标,综合预测分数(IFS),我们表明风险中性密度在信息内容方面优于基于历史的预测。我们发现,方差伽马模型产生的观测价格的样本外可能性最高,预测误差最低,而基于arch的GRJ-FHS在整个密度范围内提供了最一致的预测。相反,对数正态密度、赫斯顿模型或布里登-利岑伯格公式会产生有偏差的预测,并在统计检验中被拒绝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial Density Forecasts: A Comprehensive Comparison of Risk-Neutral and Historical Schemes
We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations- by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GRJ-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信