运动几何学:历史发展的一些要素

Mario Bacelar Valente
{"title":"运动几何学:历史发展的一些要素","authors":"Mario Bacelar Valente","doi":"10.14201/art201982526","DOIUrl":null,"url":null,"abstract":"In this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion that was first conceived by ancient Greek mathematicians.","PeriodicalId":259984,"journal":{"name":"ArtefaCToS. Revista de estudios sobre la ciencia y la tecnología","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometría del movimiento: algunos elementos de su desarrollo histórico\",\"authors\":\"Mario Bacelar Valente\",\"doi\":\"10.14201/art201982526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion that was first conceived by ancient Greek mathematicians.\",\"PeriodicalId\":259984,\"journal\":{\"name\":\"ArtefaCToS. Revista de estudios sobre la ciencia y la tecnología\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArtefaCToS. Revista de estudios sobre la ciencia y la tecnología\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14201/art201982526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArtefaCToS. Revista de estudios sobre la ciencia y la tecnología","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/art201982526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们回到马歇尔·克拉格特关于古希腊运动几何存在的观点。它可以用两种方式来解读。作为古希腊运动几何的基本表述,随后在伽利略和牛顿的里程碑式著作中进一步发展了它的某些方面。相反,它可以被解读为伽利略和牛顿数学的基本方面,可以被认为是运动几何的发展,最早是由古希腊数学家提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometría del movimiento: algunos elementos de su desarrollo histórico
In this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion that was first conceived by ancient Greek mathematicians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信