基于自动RTL到tlm抽象的RTL断言挖掘

Tara Ghasempouri, Alessandro Danese, G. Pravadelli, N. Bombieri, J. Raik
{"title":"基于自动RTL到tlm抽象的RTL断言挖掘","authors":"Tara Ghasempouri, Alessandro Danese, G. Pravadelli, N. Bombieri, J. Raik","doi":"10.1109/FDL.2019.8876941","DOIUrl":null,"url":null,"abstract":"We present a three-step flow to improve Assertion-based Verification methodology with integrated RTL-to-TLM abstraction: First, an automatic assertion miner generates a large set of possible assertions from an RTL design. Second, automatic assertion qualification identifies the most interesting assertions from this set. Third, the assertions are abstracted to the transaction level, such that they can be re-used in TLM verification. We show that the proposed flow automatically chooses the best assertions among the ones generated to verify the design components when abstracted from RTL to TLM. Our experimental results indicate that the proposed methodology allows us to re-use the most interesting set at TLM without relying on any time consuming or error-prone manual transformations with a considerable amount of speed up and considerable reduction in the execution time.","PeriodicalId":162747,"journal":{"name":"2019 Forum for Specification and Design Languages (FDL)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RTL Assertion Mining with Automated RTL-to-TLM Abstraction\",\"authors\":\"Tara Ghasempouri, Alessandro Danese, G. Pravadelli, N. Bombieri, J. Raik\",\"doi\":\"10.1109/FDL.2019.8876941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a three-step flow to improve Assertion-based Verification methodology with integrated RTL-to-TLM abstraction: First, an automatic assertion miner generates a large set of possible assertions from an RTL design. Second, automatic assertion qualification identifies the most interesting assertions from this set. Third, the assertions are abstracted to the transaction level, such that they can be re-used in TLM verification. We show that the proposed flow automatically chooses the best assertions among the ones generated to verify the design components when abstracted from RTL to TLM. Our experimental results indicate that the proposed methodology allows us to re-use the most interesting set at TLM without relying on any time consuming or error-prone manual transformations with a considerable amount of speed up and considerable reduction in the execution time.\",\"PeriodicalId\":162747,\"journal\":{\"name\":\"2019 Forum for Specification and Design Languages (FDL)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Forum for Specification and Design Languages (FDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FDL.2019.8876941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Forum for Specification and Design Languages (FDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDL.2019.8876941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个三步流程,通过集成RTL到tlm抽象来改进基于断言的验证方法:首先,自动断言挖掘器从RTL设计生成大量可能的断言。其次,自动断言限定识别出该集合中最有趣的断言。第三,断言被抽象到事务级别,这样它们就可以在TLM验证中重用。我们表明,当从RTL抽象到TLM时,建议流会自动从生成的断言中选择最佳断言来验证设计组件。我们的实验结果表明,所提出的方法允许我们在TLM中重用最有趣的集合,而不依赖于任何耗时或容易出错的手动转换,从而大大提高了速度,并大大减少了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RTL Assertion Mining with Automated RTL-to-TLM Abstraction
We present a three-step flow to improve Assertion-based Verification methodology with integrated RTL-to-TLM abstraction: First, an automatic assertion miner generates a large set of possible assertions from an RTL design. Second, automatic assertion qualification identifies the most interesting assertions from this set. Third, the assertions are abstracted to the transaction level, such that they can be re-used in TLM verification. We show that the proposed flow automatically chooses the best assertions among the ones generated to verify the design components when abstracted from RTL to TLM. Our experimental results indicate that the proposed methodology allows us to re-use the most interesting set at TLM without relying on any time consuming or error-prone manual transformations with a considerable amount of speed up and considerable reduction in the execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信