差异进化更快更健壮

Wenyin Gong, Z. Cai
{"title":"差异进化更快更健壮","authors":"Wenyin Gong, Z. Cai","doi":"10.1109/ICIT.2006.372212","DOIUrl":null,"url":null,"abstract":"In this paper, an improved version of the differential evolution (DE) based on the orthogonal design (ODE) is presented to make the DE faster and more robust. The ODE combines the conventional DE (CDE), which is simple and efficient, with the orthogonal design, which can exploit the optimum offspring. The ODE has some new features. (1) It uses a robust crossover based on orthogonal design and an optimal offspring is generated with the statistical optimal method. (2) Decision variable fraction strategy is applied to decrease the number of the orthogonal design combinations and make the algorithm converge faster. (3) The ODE simplifies the scaling factor F of the CDE, which can reduce the parameters of the algorithm and make it easy to use for engineers. We execute the proposed algorithm to solve twelve benchmark functions with low or high dimensions and a large number of local minima. Simulations indicate that the ODE is able to find the near-optimal solution in all cases. Compared with some state-of-the-art evolutionary algorithms, the performance of the ODE outperforms other evolutionary algorithms in terms of the quality of the final solution and the stability; and its computational cost (measured by the average number of fitness function evaluations) is lower than the cost required by the other techniques compared.","PeriodicalId":103105,"journal":{"name":"2006 IEEE International Conference on Industrial Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Differential Evolution Made Faster And More Robust\",\"authors\":\"Wenyin Gong, Z. Cai\",\"doi\":\"10.1109/ICIT.2006.372212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved version of the differential evolution (DE) based on the orthogonal design (ODE) is presented to make the DE faster and more robust. The ODE combines the conventional DE (CDE), which is simple and efficient, with the orthogonal design, which can exploit the optimum offspring. The ODE has some new features. (1) It uses a robust crossover based on orthogonal design and an optimal offspring is generated with the statistical optimal method. (2) Decision variable fraction strategy is applied to decrease the number of the orthogonal design combinations and make the algorithm converge faster. (3) The ODE simplifies the scaling factor F of the CDE, which can reduce the parameters of the algorithm and make it easy to use for engineers. We execute the proposed algorithm to solve twelve benchmark functions with low or high dimensions and a large number of local minima. Simulations indicate that the ODE is able to find the near-optimal solution in all cases. Compared with some state-of-the-art evolutionary algorithms, the performance of the ODE outperforms other evolutionary algorithms in terms of the quality of the final solution and the stability; and its computational cost (measured by the average number of fitness function evaluations) is lower than the cost required by the other techniques compared.\",\"PeriodicalId\":103105,\"journal\":{\"name\":\"2006 IEEE International Conference on Industrial Technology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2006.372212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2006.372212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文在正交设计的基础上,提出了一种改进的差分进化算法,使差分进化算法更快,鲁棒性更好。该算法将传统遗传算法(CDE)与正交设计相结合,具有简单、高效的优点,可开发出最优子代。ODE有一些新特性。(1)采用基于正交设计的稳健交叉,采用统计最优方法生成最优子代。(2)采用决策变量分数策略,减少正交设计组合的数量,提高算法收敛速度。(3) ODE简化了CDE的比例因子F,可以减少算法的参数,便于工程师使用。我们使用该算法求解了12个具有低维或高维和大量局部极小值的基准函数。仿真结果表明,该算法在所有情况下都能找到近似最优解。与一些最先进的进化算法相比,该算法在最终解的质量和稳定性方面优于其他进化算法;其计算成本(以适应度函数评估的平均次数衡量)低于其他技术所需要的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Evolution Made Faster And More Robust
In this paper, an improved version of the differential evolution (DE) based on the orthogonal design (ODE) is presented to make the DE faster and more robust. The ODE combines the conventional DE (CDE), which is simple and efficient, with the orthogonal design, which can exploit the optimum offspring. The ODE has some new features. (1) It uses a robust crossover based on orthogonal design and an optimal offspring is generated with the statistical optimal method. (2) Decision variable fraction strategy is applied to decrease the number of the orthogonal design combinations and make the algorithm converge faster. (3) The ODE simplifies the scaling factor F of the CDE, which can reduce the parameters of the algorithm and make it easy to use for engineers. We execute the proposed algorithm to solve twelve benchmark functions with low or high dimensions and a large number of local minima. Simulations indicate that the ODE is able to find the near-optimal solution in all cases. Compared with some state-of-the-art evolutionary algorithms, the performance of the ODE outperforms other evolutionary algorithms in terms of the quality of the final solution and the stability; and its computational cost (measured by the average number of fitness function evaluations) is lower than the cost required by the other techniques compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信