神经网络检测二维渗流系统相变的效率

Gustavo Medina Ángel, Gennadiy Burlak
{"title":"神经网络检测二维渗流系统相变的效率","authors":"Gustavo Medina Ángel, Gennadiy Burlak","doi":"10.30973/progmat/2022.14.3/1","DOIUrl":null,"url":null,"abstract":"Construimos una red neuronal (RN) que simula el efecto de percolación para el caso de sistemas 2D utilizando una red neuronal supervisada. Creamos una base de datos (DB) donde asignamos los valores de los poros con radio aleatorio que componen el sistema bidimensional para entrenar nuestra red, una vez entrenada, la RN fue capaz de detectar si había o no una transición de fase en sistemas 2D con las que se probó nuestra red. Realizamos varias pruebas introduciendo ruido en los radios de los poros en los sistemas de prueba y obtuvimos buenos resultados de predicción cuando el ruido era pequeño, mientras que para ruidos superiores a 0.3 la precisión de predicción tendía a disminuir.","PeriodicalId":417893,"journal":{"name":"Programación Matemática y Software","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eficiencia de una red neuronal para detectar la transición de fase en sistemas 2D con percolación\",\"authors\":\"Gustavo Medina Ángel, Gennadiy Burlak\",\"doi\":\"10.30973/progmat/2022.14.3/1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Construimos una red neuronal (RN) que simula el efecto de percolación para el caso de sistemas 2D utilizando una red neuronal supervisada. Creamos una base de datos (DB) donde asignamos los valores de los poros con radio aleatorio que componen el sistema bidimensional para entrenar nuestra red, una vez entrenada, la RN fue capaz de detectar si había o no una transición de fase en sistemas 2D con las que se probó nuestra red. Realizamos varias pruebas introduciendo ruido en los radios de los poros en los sistemas de prueba y obtuvimos buenos resultados de predicción cuando el ruido era pequeño, mientras que para ruidos superiores a 0.3 la precisión de predicción tendía a disminuir.\",\"PeriodicalId\":417893,\"journal\":{\"name\":\"Programación Matemática y Software\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programación Matemática y Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30973/progmat/2022.14.3/1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programación Matemática y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30973/progmat/2022.14.3/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个神经网络(RN),利用监督神经网络模拟二维系统的渗流效应。创建了一个数据库(DB)拨出孔洞和收音机随机值组成二维来训练我们的网络系统,一旦训练,RN能够检测是否有一个过渡阶段的2D与系统试我们的网络。我们通过在测试系统中引入孔隙半径噪声进行了几次测试,当噪声较小时,我们获得了良好的预测结果,而对于大于0.3的噪声,预测精度往往会降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eficiencia de una red neuronal para detectar la transición de fase en sistemas 2D con percolación
Construimos una red neuronal (RN) que simula el efecto de percolación para el caso de sistemas 2D utilizando una red neuronal supervisada. Creamos una base de datos (DB) donde asignamos los valores de los poros con radio aleatorio que componen el sistema bidimensional para entrenar nuestra red, una vez entrenada, la RN fue capaz de detectar si había o no una transición de fase en sistemas 2D con las que se probó nuestra red. Realizamos varias pruebas introduciendo ruido en los radios de los poros en los sistemas de prueba y obtuvimos buenos resultados de predicción cuando el ruido era pequeño, mientras que para ruidos superiores a 0.3 la precisión de predicción tendía a disminuir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信